Dva vogala trikotnika imajo kot (3 pi) / 8 in pi / 8. Če ima ena stran trikotnika dolžino 2, kakšen je najdaljši možni obseg trikotnika?

Dva vogala trikotnika imajo kot (3 pi) / 8 in pi / 8. Če ima ena stran trikotnika dolžino 2, kakšen je najdaljši možni obseg trikotnika?
Anonim

Odgovor:

Največja možna površina trikotnika 9.0741

Pojasnilo:

Glede na #: / _ A = pi / 8 / _B = (3pi) / 8 #

# / _C = (pi - pi / 8 - (3pi) / 8) = (pi) / 2 #

Da bi dobili najdaljši obod, moramo upoštevati stran, ki ustreza najmanjšemu kotu.

#a / sin A = b / sin B = c / sin C #

# 2 / sin (pi / 8) = b / sin ((3pi) / 8) = c / sin ((pi) / 2) #

#:. b = (2 * sin ((3pi) / 8)) / sin (pi / 8) = 1,8478 #

#c = (2 * sin (pi / 2)) / sin (pi / 8) = 5,2263 #

Najdaljši možni obseg #P = 2 + 1,8478 + 5,2263 = 9,0741 #