Odgovor:
Pojasnilo:
Če boste morali integracijo uporabiti po delih dvakrat.
Za
Let
Sedaj uporabite IBP na rdečem izrazu.
Združite integrale skupaj:
Zato
Let
Uporabljamo, Pravilo o integraciji delov
Vzamemo,
Zato
Najti
To podajte v
Uživajte v matematiki!
Odgovor:
Pojasnilo:
Let
Uporaba IBP
Ponovno IBP, v
Reševanje
Uživajte v matematiki!
Pokažite, da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sem zmeden, če naredim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bo postal negativen kot cos (180 ° - theta) = - costheta v drugi kvadrant. Kako naj dokazujem vprašanje?
Glej spodaj. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Kako integrirate int sec ^ -1x z metodo integracije po delih?
Odgovor je = x "arc" secx-ln (x + sqrt (x ^ 2-1)) + C Potrebujemo (sec ^ -1x) '= ("arc" secx)' = 1 / (xsqrt (x ^ 2-1)) intsecxdx = ln (sqrt (x ^ 2-1) + x) Integracija po delih je intu'v = uv-intuv 'Tu imamo u' = 1, =>, u = xv = "lok t "secx, =>, v '= 1 / (xsqrt (x ^ 2-1)) Zato je int" arc "secxdx = x" arc "secx-int (dx) / (sqrt (x ^ 2-1)) Izvedite drugi integral z zamenjavo Naj bo x = secu, =>, dx = sekutanudu sqrt (x ^ 2-1) = sqrt (sec ^ 2u-1) = tanu intdx / sqrt (x ^ 2-1) = int (secutanudu) ) / (tanu) = intsecudu = int (secu (secu + tanu)
Kako integrirate int sqrt (-x ^ 2-6x + 16) / xdx z uporabo trigonometrične substitucije?
Glejte spodnji odgovor: