Odgovor:
uporabite pravilo sinus
Pojasnilo:
Predlagam vam, da najdete kos papirja in svinčnik, da lažje razumete to razlago.
poiščite vrednost preostalega kota:
dajte jim imena
najmanjši kot bo obrnjen na najkrajšo stran trikotnika,
kar pomeni, da je B (najmanjši kot) obrnjen na najkrajšo stran,
in drugi dve strani sta daljši,
kar pomeni, da je AC najkrajša stran,
tako da imata lahko drugi dve stranici najdaljšo dolžino.
recimo, da je AC 5 (dolžina, ki ste jo dali)
z uporabo sinusnega pravila lahko vemo
razmerje sinusnega kota in stran, na kateri je obrnjen kot, sta enaka:
znano:
s tem lahko najdete dolžino drugih dveh strani, če je najkrajša 5
Ostalo vam bom pustil, še naprej
Dva vogala trikotnika imajo kot (2 pi) / 3 in (pi) / 4. Če je ena stran trikotnika dolga 4, kakšen je najdaljši možni obseg trikotnika?
P_max = 28,31 enote Problem vam daje dva od treh kotov v poljubnem trikotniku. Ker vsota kotov v trikotniku mora biti do 180 stopinj, ali pi radianov, lahko najdemo tretji kot: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Nariši trikotnik: Problem navaja, da ima ena od strani trikotnika dolžino 4, vendar ne določa, na kateri strani. Vendar pa je v vsakem danem trikotniku res, da bo najmanjša stran nasproti najmanjšemu kotu. Če želimo maksimirati obod, moramo narediti stran, ki ima dolžino 4, nasprotno stran od najmanjšega kota. Glede na to, da bosta drugi dve str
Dva vogala trikotnika imajo kot (2 pi) / 3 in (pi) / 4. Če je ena stran trikotnika dolga 19, kakšen je najdaljši možni obseg trikotnika?
Najdaljša možna obodna barva (zelena) (P = 19 + 51,909 + 63,5752 = 134,4842) Trije koti so (2pi) / 3, pi / 4, pi / 12, ko trije koti prispevajo k pi ^ c Da dobimo najdaljši obod, stran 19 mora ustrezati najmanjšemu kotu pi / 12 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4)) ) / sin (pi / 12) = 51.909 c = (19 * sin ((2pi) / 3)) / sin (pi / 12) = 63.5752 Najdaljša možna obodna barva (zelena) (P = 19 + 51.909 + 63.5752 = 134.4842 )
Dva vogala trikotnika imajo kot (2 pi) / 3 in (pi) / 4. Če je ena stran trikotnika dolga 8, kakšen je najdaljši možni obseg trikotnika?
Najdaljši možni obseg trikotnika je 56,63 enote. Kot med stranicama A in B je / _c = (2pi) / 3 = 120 ^ 0 Kot med stranicama B in C je / _a = pi / 4 = 45 ^ 0:. Kot med stranema C in A je / _b = 180- (120 + 45) = 15 ^ 0 Za najdaljši obod trikotnika 8 mora biti najmanjša stran, nasprotna najmanjšemu kotu,:. B = 8 Sine pravilo navaja, če so A, B in C dolžine stranic in so nasprotni koti a, b in c v trikotniku, potem: A / sina = B / sinb = C / sinc; B = 8:. B / sinb = C / sinc ali 8 / sin15 = C / sin120 ali C = 8 * (sin120 / sin15) ~ ~ 26.77 (2dp) Podobno A / sina = B / sinb ali A / sin45 = 8 / sin15 ali A = 8 * (sin45 / sin15)