Uporabili bomo
Dokaži, da ((cos (33 ^ @)) ^ 2- (cos (57 ^ @)) ^ 2) / ((sin (10.5 ^ @)) ^ 2- (sin (34.5 ^ @)) ^ 2) = -sqrt2?
Glej spodaj. Uporabljamo formule (A) - cosA = sin (90 ^ @ - A), (B) - cos ^ 2A - sin ^ 2A = cos2A (C) - 2sinAcosA = sin2A, (D) - sinA + sinB = 2sin (( A + B) / 2) cos ((AB) / 2) in (E) - sinA-sinB = 2cos ((A + B) / 2) sin ((AB) / 2) (cos ^ 2 33 ^ @ - cos ^ 2 57 ^ @) / (sin ^ 2 10.5^@-sin^2 34.5 ^ @) = (cos ^ 2 33 ^ @ - sin ^ 2 (90 ^ @ - 57 ^ @)) / ((sin10. 5 ^ @ + sin34.5 ^ @) (sin10.5 ^ @ - sin34.5 ^ @)) - uporabljeno A = (cos ^ 2 33 ^ @ - sin ^ 2 33 ^ @) / (- (2sin22.5) ^ @ cos12 ^ @) (2cos22.5 ^ @ sin12 ^ @)) - uporabljeno D & E = (cos66 ^ @) / (- (2sin22.5 ^ @ cos22.5 ^ @ xx2sin12 ^ @ cos12 ^ @) - uporabljeno B = -
Dokaži, da (cos (33 ^ @) - cos (57 ^ @)) / (sin (10.5 ^ @) - sin (34.5 ^ @)) = - sqrt (2)?
Ne moremo ga dokazati, ker: (cos (33 ^ @) - cos (57 ^ @)) / (sin (10.5 ^ @) - sin (34.5 ^ @)) = - 0.765
Dokaži, da je Cot 4x (sin 5 x + sin 3 x) = Otroška postelja x (sin 5 x - sin 3 x)?
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) Desna stran: posteljica x (sin 5x - sin 3x) = posteljica x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Leva stran: posteljica (4x) (sin 5x + sin 3x) = posteljica (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x so enaki kvadr.