Odgovor:
Pojasnilo:
Za poenostavitev
V našem primeru lahko začnemo na naslednji način:
Ker nismo imeli številk, bi lahko nadalje razdelili, kar pomeni, da je število, ki ni
Par številk šteje kot ena številka, in sicer
Tako lahko sedaj pišemo
Več primerov:
(1)
Ne moremo najti več deljivih dejavnikov in zagotovo nimamo para številk, zato se tu ustavimo in ga ne imenujemo poenostavljeno. Edini in edini odgovor je
(2)
Našli smo par, zato ga lahko poenostavimo:
(3)
Nadaljujemo na enak način in pišemo
Kaj je [5 (kvadratni koren iz 5) + 3 (kvadratni koren iz 7)] / [4 (kvadratni koren iz 7) - 3 (kvadratni koren iz 5)]?
(159 + 29sqrt (35)) / 47 barva (bela) ("XXXXXXXX") ob predpostavki, da nisem naredil nobenih aritmetičnih napak (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalizirajte imenovalec tako, da pomnožimo s konjugacijo: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45) ) = (159 + 29sqrt (35)) / 47
Kaj je (kvadratni koren 2) + 2 (kvadratni koren 2) + (kvadratni koren 8) / (kvadratni koren 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 lahko izrazimo kot barvo (rdeča) (2sqrt2 izraz zdaj postane: (sqrt (2) + 2sqrt (2) + barva (rdeča) (2sqrt2)) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 in sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Kaj je kvadratni koren 7 + kvadratni koren 7 ^ 2 + kvadratni koren 7 ^ 3 + kvadratni koren 7 ^ 4 + kvadratni koren 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prva stvar, ki jo lahko storimo, je preklicati korenine na tistih s pravimi močmi. Ker: sqrt (x ^ 2) = x in sqrt (x ^ 4) = x ^ 2 za poljubno število, lahko rečemo, da sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sedaj lahko 7 ^ 3 ponovno napišemo kot 7 ^ 2 * 7, in da 7 ^ 2 lahko izstopi iz korena! Enako velja za 7 ^ 5, vendar je ponovno napisano kot 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Zdaj postav