Kaj je ortocenter trikotnika s koti (4, 1), (1, 3) in (5, 2) #?

Kaj je ortocenter trikotnika s koti (4, 1), (1, 3) in (5, 2) #?
Anonim

Odgovor:

Ortocenter trikotnika je #(19/5,1/5)#

Pojasnilo:

Let #triangleABC "je trikotnik s koti na" #

#A (4,1), B (1,3) in C (5,2) #

Let #bar (AL), vrstica (BM) in vrstica (CN) # višinah strani #bar (BC), vrstica (AC) in vrstica (AB) # v tem zaporedju.

Let # (x, y) # biti presečišče treh višin

Strmina #bar (AB) = (1-3) / (4-1) = - 2/3 #

#bar (AB) _ | _bar (CN) => #naklon # bar (CN) = 3/2 #, # bar (CN) # skozi #C (5,2) #

#:.#Equn. od #bar (CN) # je #: y-2 = 3/2 (x-5) #

# => 2y-4 = 3x-15 #

# i. barva (rdeča) (3x-2y = 11 ….. do (1) #

Strmina #bar (BC) = (2-3) / (5-1) = - 1/4 #

#bar (AL) _ | _bar (BC) => #naklon # bar (AL) = 4 #, # bar (AL) # skozi #A (4,1) #

#:.#Equn. od #bar (AL) # je #: y-1 = 4 (x-4) #

# => y-1 = 4x-16 #

# i. barva (rdeča) (y = 4x-15 ….. do (2) #

Subst. # y = 4x-15 # v #(1)#,dobimo

# 3x-2 (4x-15) = 11 => 3x-8x + 30 = 11 #

# -5x = -19 #

# => barva (modra) (x = 19/5 #

Iz equna.#(2)# dobimo

# y = 4 (19/5) -15 => y = (76-75) / 5 => barva (modra) (y = 1/5 #

Zato je ortocenter trikotnika #(19/5,1/5)=(3.8,0.2)#