Kaj je enotni vektor, ki je pravokoten na ravnino, ki vsebuje <0, 4, 4> in <1, 1, 1>?

Kaj je enotni vektor, ki je pravokoten na ravnino, ki vsebuje <0, 4, 4> in <1, 1, 1>?
Anonim

Odgovor:

Odgovor je # = / 0,1 / sqrt2, -1 / sqrt2〉 #

Pojasnilo:

Vektor, ki je pravokoten na 2 druge vektorje, je podan v navzkrižnem produktu.

#〈0,4,4〉#x# 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | #

# = hati (0) -hatj (-4) + hatk (-4) #

#=〈0,4,-4〉#

Preverjanje z izdelavo točk

#〈0,4,4〉.〈0,4,-4〉=0+16-16=0#

#〈1,1,1〉.〈0,4,-4〉=0+4-4=0#

Modul #〈0,4,-4〉# je #= 〈0,4,-4〉 #

# = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 #

Enotni vektor se dobi z deljenjem vektorja z modulom

# = 1 / (4sqrt2), 0,4, -4〉 #

# = / 0,1 / sqrt2, -1 / sqrt2〉 #