Kako rešujete cos 2theta + 5 cos theta + 3 = 0?

Kako rešujete cos 2theta + 5 cos theta + 3 = 0?
Anonim

Odgovor:

# x = 2npi + - (2pi) / 3 #

Pojasnilo:

# rarrcos2x + 5cosx + 3 = 0 #

# rarr2cos ^ 2x-1 + 5cosx + 3 = 0 #

# rarr2cos ^ 2x + 5cosx + 2 = 0 #

# rarr2cos ^ 2x + 4cosx + cosx + 2 = 0 #

# rarr2cosx (cosx + 2) +1 (cosx + 2) = 0 #

#rarr (2cosx + 1) (cosx + 2) = 0 #

Ali, # 2cosx + 1 = 0 #

# rarrcosx = -1 / 2 = cos ((2pi) / 3) #

# rarrx = 2npi + - (2pi) / 3 # kje # nrarrZ #

Ali, # cosx + 2 = 0 #

# rarrcosx = -2 # kar je nesprejemljivo.

Torej je splošna rešitev # x = 2npi + - (2pi) / 3 #.

Odgovor:

# theta = 2kpi + - (2pi) / 3, kinZ #

Pojasnilo:

# cos2theta + 5costheta + 3 = 0 #

#:. 2cos ^ 2theta-1 + 5costheta + 3 = 0 #

#:. 2cos ^ 2theta + 5costheta + 2 = 0 #

#:. 2cos ^ 2theta + 4costheta + costheta + 2 = 0 #

#:. 2costheta (costheta + 2) +1 (costheta + 2) = 0 #

#:. (costheta + 2) (2costheta + 1) = 0 #

# => costheta = -2! v -1,1 ali costheta = -1 / 2 #

# => costheta = cos (pi-pi / 3) = cos ((2pi) / 3) #

# theta = 2kpi + - (2pi) / 3, kinZ #

Odgovor:

Uporaba # cos2theta = 2 (costheta) ^ 2-1 # in splošno rešitev. t #costheta = cosalpha # je # theta = 2npi + -alfa #; # n Z #

Pojasnilo:

# cos2theta + 5costheta + 3 #

# = 2 (costheta) ^ 2-1 + 5costheta + 3 #

# = 2 (costheta) ^ 2 + 5costheta + 2 #

#rArr (costheta + 1/2) (costheta + 2) = 0 #

Tukaj #costheta = -2 # ni mogoče

Torej najdemo le splošne rešitve # costheta = -1 / 2 #

# rArrcostheta = (2pi) / 3 #

#:. theta = 2npi + - (2pi) / 3; n Z #