Odgovor:
Pojasnilo:
Vidimo lahko, da če delimo enakostranični trikotnik na pol, ostajamo z dvema ustreznima pravokotnima trikotnikoma. Tako je ena od nog enega izmed pravih trikotnikov
Če želimo določiti območje celotnega trikotnika, to vemo
Dolžina vsake strani enakostraničnega trikotnika se poveča za 5 centimetrov, tako da je obod 60 centimetrov. Kako pišeš in rešuješ enačbo, da bi našel prvotno dolžino vsake strani enakostraničnega trikotnika?
Našel sem: 15 "v" Pokličimo originalne dolžine x: Povečanje 5 "v" nam bo dalo: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preureditev: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "v"
Obod trikotnika je 29 mm. Dolžina prve strani je dvakratna dolžina druge strani. Dolžina tretje strani je 5 več od dolžine druge strani. Kako najdete dolžine strani trikotnika?
S_1 = 12 s_2 = 6 s_3 = 11 Obod trikotnika je vsota dolžin vseh njegovih strani. V tem primeru velja, da je obseg 29mm. Torej za ta primer: s_1 + s_2 + s_3 = 29 Torej reševanje dolžine stranic, prevedemo izjave v dano v obliko enačbe. "Dolžina prve strani je dvakratna dolžina druge strani". Da bi to rešili, dodeljujemo naključno spremenljivko bodisi s_1 ali s_2. Za ta primer bi pustil x, da je dolžina druge strani, da bi se izognili frakcijam v enačbi. tako vemo, da: s_1 = 2s_2 ampak ker smo pustili s_2 x, zdaj vemo, da: s_1 = 2x s_2 = x "Dolžina 3. strani je 5 več kot je dolžina 2. strani." Prevedem zgo
Kakšno je območje enakostraničnega trikotnika, katerega stranice merijo 10?
"Enota" ^ 2 Območje enakostraničnega trikotnika je podano s formulo "A" = sqrt (3) / 4 ("stranska dolžina") ^ 2 "A" = sqrt (3) / 4 × (" 10 enota ") ^ 2 = 25sqrt (3)" enota "^ 2