Odgovor:
Pojasnilo:
Za določeno višino,
Razlikovanje časa
Višina trikotnika narašča s hitrostjo 1,5 cm / min, medtem ko se površina trikotnika povečuje s hitrostjo 5 kvadratnih cm / min. S kakšno hitrostjo se spreminja osnova trikotnika, ko je višina 9 cm in je površina 81 kvadratnih cm?
To je problem tipa povezane stopnje (spremembe). Zanimive spremenljivke so a = višina A = območje in ker je površina trikotnika A = 1 / 2ba, potrebujemo b = osnovo. Dane stopnje spremembe so v enotah na minuto, tako da je (nevidna) neodvisna spremenljivka t = čas v minutah. Podani smo: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min. Od nas zahtevamo, da najdemo (db) / dt pri a = 9 cm in A = 81cm "" ^ 2 A = 1 / 2ba, ki se razlikuje glede na t, dobimo: d / dt (A) = d / dt (1 / 2ba). Potrebujemo pravilo o izdelku na desni. (dA) / dt = 1/2 (db) / dt a + 1 / 2b (da) / dt Dali smo vsako vrednost razen
Voda izteka iz obrnjenega stožčastega rezervoarja s hitrostjo 10.000 cm3 / min, hkrati pa se v rezervoar črpa voda s konstantno hitrostjo. Če je rezervoar višine 6 m in je premer na vrhu 4 m in če se nivo vode dvigne s hitrostjo 20 cm / min, ko je višina vode 2 m, kako najdete hitrost, po kateri se voda črpa v rezervoar?
Naj bo V prostornina vode v rezervoarju, v cm ^ 3; naj bo h globina / višina vode, v cm; in naj bo r polmer površine vode (na vrhu), v cm. Ker je rezervoar obrnjen stožec, je tudi masa vode. Ker ima rezervoar višino 6 m in polmer na vrhu 2 m, podobni trikotniki pomenijo, da frac {h} {r} = frak {6} {2} = 3, tako da je h = 3r. Prostornina obrnjenega stožca vode je potem V = frak {1} {3} pi r ^ {2} h = pi r ^ {3}. Zdaj razlikujte obe strani glede na čas t (v minutah), da dobite frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (v tem se uporablja pravilo verig) korak). Če je V_ {i} prostornina vode, ki je bila prečrpana, pote
Nivo vode v polkrogelni skledi polmera 12 palcev je 4,6 cm. Kakšen kot lahko nagnete skledo, preden se voda začne razliti?
Posodo lahko nagnete za 38,1 ° pred razlitjem vode. Na zgornji sliki si lahko ogledate skledo z vodo, ki je predstavljena v problemu, in hipotetično nagibno skledo z vodo, ki doseže rob sklede. Centri dveh polobli se postavljata in oba premera tvorita kot a. Enak kot je v pravem trikotniku, ki je oblikovan z: - segmentom od sredine poloble do središča vodne površine (12-4,6 = 7,4 palca) - od sredine poloble do roba vodne površine (12 palcev) odsek od središča vodne površine do njegovega roba V tem trikotniku grešnik (a) = 7,4 / 12, zato je a = sin ^ (- 1) (7,4 / 12) ~ ~ 38,1 °