Odgovor:
Kvadrant I
Pojasnilo:
Obstajajo štirje kvadranti, I, II, III in IV. Graf, razdeljen na te štiri kvadrante, izgleda takole:
Z uporabo tega grafa lahko enostavno določimo lokacijo para. Če sta obe številki koordinatnega para negativni, bi bili v kvadrantu III, skladno s sliko. Če je bila prva negativna in druga pozitivna, potem bi spadala v kvadrant II. V našem primeru
Vektor položaja A ima kartezične koordinate (20,30,50). Vektor položaja B ima kartezične koordinate (10,40,90). Kakšne so koordinate vektorja položaja A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Gregory je na koordinatni ravnini narisal pravokotnik ABCD. Točka A je pri (0,0). Točka B je pri (9,0). Točka C je pri (9, -9). Točka D je na (0, -9). Poišči dolžino stranskega CD-ja?
Stranski CD = 9 enot Če ignoriramo y koordinate (druga vrednost v vsaki točki), je enostavno povedati, da se, ker se stranski CD začne pri x = 9 in konča pri x = 0, absolutna vrednost 9: | 0 - 9 | = 9 Ne pozabite, da so rešitve za absolutne vrednosti vedno pozitivne Če ne razumete, zakaj je to, lahko uporabite tudi formulo razdalje: P_ "1" (9, -9) in P_ "2" (0, -9) ) V naslednji enačbi je P_ "1" C in P_ "2" je D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt ((0 - 9) ^ 2 + (-9 - (-9)) sqrt ((- 9) ^ 2 + (-9 + 9) ^ 2 sqrt ((81) + (0) sqrt
Točka A je pri (-2, -8), točka B pa pri (-5, 3). Točka A se vrti (3pi) / 2 v smeri urinega kazalca glede na izvor. Katere so nove koordinate točke A in koliko se je spremenila razdalja med točkami A in B?
Naj začetna polarna koordinata A, (r, theta) glede na začetno kartezično koordinato A, (x_1 = -2, y_1 = -8) Tako lahko napišemo (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Po 3pi / 2 vrtenje v smeri urinega kazalca nova koordinata A postane x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta) = = - rsin (3pi / 2-theta) = rcostheta = -2 Začetna razdalja A od B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 končna razdalja med novim položajem A ( 8, -2) in B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Torej razlika = sqrt194-sqrt130 si oglejte tudi povezavo http://so