Odgovor:
Povzetek je kratica za pisanje dolgih dodatkov.
Pojasnilo:
Recimo, da želite dodati vse številke do vključno 50.
Potem lahko napišete:
(Če to v celoti napišete, bo to dolga vrstica številk).
S tem zapisom boste napisali:
Pomen: povzamemo vse številke
The
Drug primer:
Če želite dodati vse kvadrate iz
Vidiš to
Kaj je eksponentni in eksponentni zapis? + Primer
Eksponencialni zapis je način kratkotrajnega za zelo velike številke in zelo majhne številke. Toda prvi eksponenti. To so številke, ki jih vidite v zgornjem desnem kotu druge številke, ki se imenuje baza, kot v 10 ^ 2, kjer je 10 osnova in 2 je eksponent. Eksponent vam pove, kolikokrat pomnožite bazo s samim seboj: 10 ^ 2 = 10 * 10 = 100 To velja za poljubno število: 2 ^ 4 = 2 * 2 * 2 * 2 = 16 10 ^ 5 = 10 * 10 * 10 * 10 * 10 = 100000 Torej 10 ^ 5 je kratek način pisanja 1 s 5 ničli! To bo koristno, če bomo obravnavali zelo velike številke: Primer: Razdalja do sonca je približno 150 milijonov kilometrov ali 150 milijard met
Kaj je zapis funkcije? + Primer
Spremenite y na f (x) Rešite za eno spremenljivko, tipično y in nato spremenite y na f (x), na primer: -10 = 3x-y postane f (x) = 3x + 10
Kaj je zapis za drugi derivat? + Primer
Če imate raje Leibnizov zapis, je drugi derivat označen (d ^ 2y) / (dx ^ 2). Primer: y = x ^ 2 dy / dx = 2x (d ^ 2y) / (dx ^ 2) = 2 Če vam je všeč notacija, potem je drugi derivat označen z dvema primarnima oznakama, v nasprotju z eno oznako s prvo. derivati: y = x ^ 2 y '= 2x y' '= 2 Podobno, če je funkcija zapisana v funkciji: f (x) = x ^ 2 f' (x) = 2x f '' (x) = 2 Most ljudje poznajo oba zapisa, zato običajno ni pomembno, kateri zapis boste izbrali, dokler bodo ljudje razumeli, kaj pišete. Sam raje imam oznako Leibniz, ker drugače skušam zamenjati apostrofe z eksponenti enega ali enajstih. Čeprav