Ker ne moremo vedeti, kje je dejansko elektron, kadar koli.
Namesto tega izračunamo verjetnost, da je elektron na vsaki točki v prostoru okoli jedra atoma. Ta tridimenzionalni nabor verjetnosti kaže, da elektroni niso vedno kjerkoli, ampak so najverjetneje najdeni v določenih območjih prostora s posebnimi oblikami.Nato lahko izberemo stopnjo verjetnosti, kot je 95%, in narišemo rob okoli volumna, kjer je elektron verjetnost 95% ali boljša, če jo najdemo. Te količine prostora so klasične orbitalne oblike, ki jih boste videli.
V teh prostorih verjetnosti niso enake, tako da so orbitale včasih prikazane tudi kot radialne porazdelitvene funkcije: grafi, ki izrišejo verjetnost glede na oddaljenost od jedra.
Preučevali ste število ljudi, ki čakajo v vrsti v vaši banki v petek popoldne ob 15. uri in so ustvarili porazdelitev verjetnosti za 0, 1, 2, 3 ali 4 osebe v vrsti. Verjetnosti so 0,1, 0,3, 0,4, 0,1 in 0,1. Kolikšna je verjetnost, da se bo v petek popoldne ob 15.00 uvrstilo največ 3 osebe?
Največ 3 osebe v vrstici bi bilo. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Tako je P (X <= 3) = 0,9. je lažje, če uporabite pravilo komplimenta, saj imate eno vrednost, ki vas ne zanima, tako da jo lahko preprosto izničite od skupne verjetnosti. kot: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0.1 = 0.9 Torej P (X <= 3) = 0.9
Preučevali ste število ljudi, ki čakajo v vrsti v vaši banki v petek popoldne ob 15. uri in so ustvarili porazdelitev verjetnosti za 0, 1, 2, 3 ali 4 osebe v vrsti. Verjetnosti so 0,1, 0,3, 0,4, 0,1 in 0,1. Kolikšna je verjetnost, da bodo v petek popoldne v 3 uri na vrsti vsaj 3 osebe?
To je tudi ... ali situacija. Verjetnosti lahko dodate. Pogoji so izključni, to pomeni: ne morete imeti 3 in 4 osebe v vrsti. V vrsti so 3 osebe ali 4 osebe. Torej dodajte: P (3 ali 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Preverite svoj odgovor (če imate čas med testom), tako da izračunate nasprotno verjetnost: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 In ta in vaš odgovor dodata do 1,0, kot bi morala.
Preučevali ste število ljudi, ki čakajo v vrsti v vaši banki v petek popoldne ob 15. uri in so ustvarili porazdelitev verjetnosti za 0, 1, 2, 3 ali 4 osebe v vrsti. Verjetnosti so 0,1, 0,3, 0,4, 0,1 in 0,1. Kakšno je pričakovano število ljudi (povprečno), ki čakajo v vrsti ob 15.00 v petek popoldne?
Pričakovano število v tem primeru lahko razumemo kot tehtano povprečje. To je najbolje doseči s seštevanjem verjetnosti danega števila s to številko. Torej, v tem primeru: 0,1 * 0 + 0,3 * 1 + 0,4 * 2 + 0,1 * 3 + 0,1 * 4 = 1,8