Odgovor:
Pojasnilo:
Pokažite, da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sem zmeden, če naredim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bo postal negativen kot cos (180 ° - theta) = - costheta v drugi kvadrant. Kako naj dokazujem vprašanje?
Glej spodaj. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Kaj je integral int ((x ^ 2-1) / sqrt (2x-1)) dx?
Int (x ^ 2-1) / sqrt (2x-1) dx = 1/20 (2x-1) ^ (5/2) +1/6 (2x-1) ^ (3/2) -3 / 4sqrt (2x-1) + C Naš velik problem v tem integralu je koren, zato se ga želimo znebiti. To lahko naredimo z uvedbo zamenjave u = sqrt (2x-1). Derivat je torej (du) / dx = 1 / sqrt (2x-1) Torej delimo s (in zapomnimo, delimo z recipročnostjo je isto kot pomnožimo s samo imenovalcem), da se integriramo glede na u: int t x ^ 2-1) / sqrt (2x-1) dx = int (x ^ 2-1) / preklic (sqrt (2x-1)) preklic (sqrt (2x-1)) du = int t ^ 2-1 Vse kar moramo storiti je, da izrazimo x ^ 2 v smislu u (ker ne morete integrirati x glede na u): u = sqrt (2x-1) u ^ 2 = 2x- 1
Kaj je integral int sin (x) ^ 3 * cos (x) dx?
= (sin ^ 4 (x)) / (4) + C int_ sin ^ 3 (x) * cos (x) dx Za zamenjavo lahko uporabimo cos (x). Zato uporabimo greh (x) kot naš vir. u = sin (x) Kar pomeni, da bomo dobili, (du) / (dx) = cos (x) Iskanje dx bo dalo, dx = 1 / cos (x) * du Zdaj zamenja originalni integral z zamenjavo, int_ u ^ 3 * cos (x) * 1 / cos (x) du Lahko izničimo cos (x) tukaj, int_ u ^ 3 du = 1 / (3 + 1) u ^ (3 + 1) + C = 1/4 u ^ 4 + C Zdaj nastavitev za u, = sin (x) ^ 4/4 + C = sin ^ 4 (x) / 4 + C