Kako ločite f (x) = 2x * sinx * cosx?

Kako ločite f (x) = 2x * sinx * cosx?
Anonim

Odgovor:

#f '(x) = 2sinxcosx + 2xcos ^ 2x-2xsin ^ 2x #

Pojasnilo:

Uporabite pravilo izdelka:

# f = ghk # => # f '= g'hk + gh'k + ghk' #

Z:

# g = 2x # => # g '= 2x #

# h = sinx # => # h '= cosx #

# k = cosx # => #k '= - sinx #

Nato imamo:

#f '(x) = 2sinxcosx + 2xcos ^ 2x-2xsin ^ 2x #

Odgovor:

#f '(x) = 2sin (x) cos (x) + 2x (cos ^ 2 (x) -sin ^ 2 (x)) #

Pojasnilo:

#f '(x) = (2x)' cdot (sin (x) cdot cos (x)) + 2x cdot (sin (x) cdot cos (x)) '#

# (2x) '= 2 #

# (sin (x) cdot cos (x)) '= sin (x)' cdot cos (x) + sin (x) cdot cos (x) '#

# = cos (x) cdot cos (x) + sin (x) cdot (-sin (x)) #

# = cos ^ 2 (x) -sin ^ 2 (x) #

#f '(x) = 2sin (x) cos (x) + 2x (cos ^ 2 (x) -sin ^ 2 (x)) #