Odgovor:
Pojasnilo:
Uporabite pravilo izdelka:
Z:
Nato imamo:
Odgovor:
Pojasnilo:
Kako ločite y = (2 + sinx) / (x + cosx)?
Dy / dx = (xcos (x) + sin (x) - 1) / (x + cos (x)) ^ 2 "Najprej se spomnimo kvocientnega pravila:" qquad qquad qquad t (x) / g (x)] ^ '= {g (x) f' (x) - f (x) g '(x)} / {g (x) ^ 2} kvad. "Dali smo funkcijo razlikovanja:" qquad qquad qquad qquad qquad qquad qquad y = {2 + sinx} / {x + cosx} quad. Uporabite pravilo količnika za izpeljavo naslednjega: y '= {[(x + cosx) (2 + sinx)'] - [(2 + sinx) (x + cosx) ']} / (x + cosx) ^ 2 y '= {[(x + cosx) (cosx)] - [(2 + sinx) (1 -sinx)]} / (x + cos x) ^ 2 pomnožimo števec in dobimo to: y' = {xcosx + cos ^ 2x - (2 - 2 sinx + sinx - sin
Dokaži: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Dokaz spodaj z uporabo konjugatov in trigonometrične različice Pitagorejeve teoreme. Barva dela 1 ((1-cosx) / (1 + cosx)) (bela) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) barva (bela) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) barva (bela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) 2. del Podobno sqrt ((1 + cosx) / (1-cosx) barva (bela) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) 3. del: Združevanje izrazov sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) barva (bela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x
Kako ločite f (x) = (sinx) / (sinx-cosx) z uporabo kvocijskega pravila?
Odgovor je: f '(x) = - cosx (sinx + cosx) / (1-sin2x) Pravilo, da je: (x) = (b (x)) / (c (x)) Potem: '(x) = (b' (x) * c (x) -b (x) * c '(x)) / (c (x)) ^ 2 Podobno za f (x): f (x) = ( sinx) / (sinx-cosx) f '(x) = ((sinx)' (sinx-cosx) -sinx (sinx-cosx) ') / (sinx-cosx) ^ 2 f' (x) = (cosx ( sinx-cosx) -sinx (cosx - (- cosx))) / (sinx-cosx) ^ 2 f '(x) = (cosxsinx-cos ^ 2x-sinxcosx-sinxcosx) / (sinx-cosx) ^ 2 f' (x) = (- sinxcosx-cos ^ 2x) / (sinx-cosx) ^ 2 f '(x) = - cosx (sinx + cosx) / (sinx-cosx) ^ 2 f' (x) = - cosx ( sinx + cosx) / (sin ^ 2x-2sinxcosx + cos ^ 2x) f '(x) =