Odgovor:
Dokaz spodaj
z uporabo konjugatov in trigonometrične različice Pitagorejeve teoreme.
Pojasnilo:
1. del
2. del
podobno
3. del: Združevanje izrazov
Kako dokazati (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Glej spodaj. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Številke x, y z izpolnjujejo abs (x + 2) + abs (y + 3) + abs (z-5) = 1 in nato dokažejo, da je abs (x + y + z) <= 1?
Glejte Razlago. Spomnimo se, da | (a + b) | le | a | + | b | ............ (zvezda). :. | x + y + z | = | (x + 2) + (y + 3) + (z-5) |, le | (x + 2) | + | (y + 3) | + | (z-5) ) | .... [ker, (zvezda)], = 1 ........... [ker, "dano]". tj., (x + y + z) | le 1.
Ali lahko nekdo pomaga preveriti to identiteto trigonometrije? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Preveri se spodaj: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (prekliči ((sinx + cosx)) ) (sinx + cosx)) / (prekliči ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => barva (zelena) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2