Dolžina vsake strani enakostraničnega trikotnika se poveča za 5 centimetrov, tako da je obod 60 centimetrov. Kako pišeš in rešuješ enačbo, da bi našel prvotno dolžino vsake strani enakostraničnega trikotnika?
Našel sem: 15 "v" Pokličimo originalne dolžine x: Povečanje 5 "v" nam bo dalo: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preureditev: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "v"
Dolžine strani trikotnika so v razmerju 5: 6: 7. Kolikšna je dolžina najdaljše strani, če je obseg manjši od 54 cm?
Najdaljša stran je manjša od 21 cm. 5x + 6x + 7x <54 18x <54 razdelimo obe strani za 18 x <3, tako da so stranice manjše od 15, manj kot 18 in manj kot 21 cm
Obod trikotnika je 29 mm. Dolžina prve strani je dvakratna dolžina druge strani. Dolžina tretje strani je 5 več od dolžine druge strani. Kako najdete dolžine strani trikotnika?
S_1 = 12 s_2 = 6 s_3 = 11 Obod trikotnika je vsota dolžin vseh njegovih strani. V tem primeru velja, da je obseg 29mm. Torej za ta primer: s_1 + s_2 + s_3 = 29 Torej reševanje dolžine stranic, prevedemo izjave v dano v obliko enačbe. "Dolžina prve strani je dvakratna dolžina druge strani". Da bi to rešili, dodeljujemo naključno spremenljivko bodisi s_1 ali s_2. Za ta primer bi pustil x, da je dolžina druge strani, da bi se izognili frakcijam v enačbi. tako vemo, da: s_1 = 2s_2 ampak ker smo pustili s_2 x, zdaj vemo, da: s_1 = 2x s_2 = x "Dolžina 3. strani je 5 več kot je dolžina 2. strani." Prevedem zgo