Kako dokazati greh (theta + phi) / cos (theta-phi) = (tantheta + tanphi) / (1 + tanthetatanphi)?

Kako dokazati greh (theta + phi) / cos (theta-phi) = (tantheta + tanphi) / (1 + tanthetatanphi)?
Anonim

Odgovor:

Oglejte si spodnji dokaz

Pojasnilo:

Potrebujemo

#sin (a + b) = sinacosb + sinbcosa #

#cos (a-b) = cosacosb + sinasinb #

Zato, # LHS = sin (theta + phi) / cos (theta-phi) #

# = (sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

Delitev z vsemi izrazi z# costhetacosphi #

# = ((sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) #

# = (sintheta / costheta + sinphi / cosphi) / (1 + sintheta / costheta * sinphi / cosphi) #

# = (tantheta + tanphi) / (1 + tanthetatanphi) #

# = RHS #

# QED #

Odgovor:

Glejte Razlago

Pojasnilo:

Let

# y = sin (theta + phi) / cos (theta-phi) #

# y = (sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

Delitev s #cos theta #, # y = (tanthetacosphi + sinphi) / (cosphi + tanthetasinphi) #

Delitev s # cosphi #, # y = (tantheta + tanphi) / (1 + tanthetatanphi) #

zato se je izkazalo.

Odgovor:

# "glej razlago" #

Pojasnilo:

# "z uporabo" barve (modre) "trigonometrične identitete" #

# • barva (bela) (x) sin (x + y) = sinxcosy + cosxsiny #

# • barva (bela) (x) cos (x-y) = cosxcosy + sinxsiny #

# "upoštevajte levo stran" #

# = (sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

# "razdelimo izraze na števec / imenovalec s" costhetacosphi #

# "in preklic skupnih dejavnikov" #

# = ((sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) = ((sintheta) / costheta + sinphi / cosphi) / (1 + sintheta / costhetaxxsinphi / cosphi #

# = (tantheta + tanphi) / (1 + tanthetatanphi) #

# = "desna stran" rArr "preverjeno" #