Odgovor:
Po grafični metodi je lokalni maksimum 1,63, skoraj na prelomnici (-0,555, 1,364), skoraj. Krivulja ima asimptoto
Pojasnilo:
Približki prelomne točke (-0.555, 1.364) so bili pridobljeni s premikanjem linij vzporedno z osmi, da bi se srečale pri zenitu.
Kot je prikazano na grafu, je mogoče dokazati, da kot
graf {(1 / sqrt (x ^ 2 + e ^ x) -xe ^ x-y) (y-1.364) (x +.555 +.001y) = 0 -10, 10, -5, 5}
Kaj so lokalni ekstremi?
Točke na neki funkciji, kjer pride do lokalne ali najmanjše vrednosti. Za neprekinjeno delovanje na celotni domeni te točke obstajajo, kjer je naklon funkcije = 0 (to je prvi derivat enak 0). Razmislite o neprekinjeni funkciji f (x) Nagib f (x) je enak nič, kjer je f '(x) = 0 na neki točki (a, f (a)). Potem bo f (a) lokalna ekstremna vrednost (maksimim ali minimalna) f (x) N.B. Absolutni ekstremi so podmnožica lokalnih ekstremov. To so točke, kjer je f (a) ekstremna vrednost f (x) na celotni domeni.
Kaj so globalni in lokalni ekstremi f (x) = 2x ^ 7-2x ^ 5?
F napišemo kot f (x) = 2x ^ 7 * (1-1 / x ^ 2), vendar lim_ (x-> oo) f (x) = oo zato ni globalnih ekstremov. Za lokalne ekstreme najdemo točke, kjer (df) / dx = 0 f '(x) = 0 => 14x ^ 6-10x ^ 4 = 0 => 2 * x ^ 4 * (7 * x ^ 2-5) ) = 0 => x_1 = sqrt (5/7) in x_2 = -sqrt (5/7) Zato imamo ta lokalni maksimum pri x = -sqrt (5/7) f (-sqrt (5/7)) = 100/343 * sqrt (5/7) in lokalni minimum pri x = sqrt (5/7) je f (sqrt (5/7)) = - 100/343 * sqrt (5/7)
Kaj je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 vzamemo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5) ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15-5 + 2 * 3-sqrt15)) / ((2sqrt3)) ^ 2- (sqrt5) ^ 2) = (prekliči (2sqrt15) -5 + 2 * 3zaključi (-sqrt15) - prekliči (2sqrt15) -5 + 2 * 3 + prekliči (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Upoštevajte, da če je v imenovalcu (sqrt3 + sqrt (3 + sqrt5)) in (sqrt3 + sqrt (3-sqrt5)), bo odgovor spremenjen.