Odgovor:
Glej spodaj.
Pojasnilo:
To je tvoj trikotnik. Kot lahko vidite, je to dvoumen primer.
Torej, da bi našli kot
Ker gre za dvoumen primer:
Koti na ravni črti se dodajo
Iz diagrama lahko vidite, kot ste opazili:
Tukaj je povezava, ki vam lahko pomaga. To lahko traja nekaj časa, da se razume, vendar se zdi, da ste na pravi poti.
www.softschools.com/math/calculus/the_ambiguous_case_of_the_law_of_sines/
Trikotnik A ima površino 12 in dve strani dolžin 3 in 8. Trikotnik B je podoben trikotniku A in ima dolžino 9. Kakšna so največja in najmanjša možna območja trikotnika B?
Največja možna površina trikotnika B = 108 Najmanjša možna površina trikotnika B = 15,1875 Delta s A in B sta podobna. Da bi dobili maksimalno območje Delta B, mora biti stran 9 Delta B enaka strani 3 Delta A. Strani so v razmerju 9: 3. Zato bodo površine v razmerju 9 ^ 2: 3 ^ 2 = 81: 9 Največje območje trikotnika B = (12 * 81) / 9 = 108 Podobno, da dobimo najmanjšo površino, bo stran 8 Delta A ustrezala strani 9 Delta B. Strani so v razmerju 9: 8 in območja 81: 64 Minimalna površina Delta B = (12 * 81) / 64 = 15.1875
Trikotnik A ima površino 12 in dve strani dolžin 3 in 8. Trikotnik B je podoben trikotniku A in ima stran dolžine 15. Kakšna so največja in najmanjša možna območja trikotnika B?
Največja možna površina trikotnika B je 300 sq.unit Najmanjša možna površina trikotnika B je 36,99 sq.unit Površina trikotnika A je a_A = 12 Vključen kot med stranema x = 8 in z = 3 je (x * z * sin Y) / 2 = a_A ali (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Zato vključeni kot med stranema x = 8 in z = 3 je 90 ^ 0 Side y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Za največ območje v trikotniku B Stran z_1 = 15 ustreza najnižji strani z = 3 Potem x_1 = 15/3 * 8 = 40 in y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Največja možna površina bo (x_1 * z_1) / 2 = (40 * 15) / 2 = 300 m2. Najmanjša površina v trikotniku B Side y
Trikotnik je enakokrčen in akuten. Če en kot trikotnika meri 36 stopinj, kakšno je merilo največjega (-ih) kota (-ov) trikotnika? Kakšno je merilo najmanjšega (-ih) kota (-ov) trikotnika?
Odgovor na to vprašanje je preprost, vendar zahteva nekaj matematičnega splošnega znanja in zdrave pameti. Enokračni trikotnik: - Trikotnik, ki ima samo dve strani, se imenuje enakokračni trikotnik. Enakokraki trikotnik ima tudi dva enaka angela. Akutni trikotnik: - Trikotnik, katerega vsi angeli so večji od 0 ^ @ in manj kot 90 ^ @, tj. Vsi angeli so akutni, se imenuje akutni trikotnik. Določen trikotnik ima kot 36 ^ @ in je enakokrčen in akuten. pomeni, da ima ta trikotnik dva enaka angela. Zdaj obstajata dve možnosti za angele. (i) Znani angel 36 ^ je enak in tretji angel je neenak. (ii) Ali sta neznana angela enaka in