Dokazati
Let
Zdaj
Pokaži
Včasih je trigonomija manjša pri matematiki in bolj pri prepoznavanju matematike, ko jo vidimo. Tukaj prepoznamo
Factoid:
Predvidevali bomo
Dovolj ozadja. Ko prepoznamo formulo s trojnim kotom, je dokaz lahek.
Dokaz:
Let
Pokažite, da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sem zmeden, če naredim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bo postal negativen kot cos (180 ° - theta) = - costheta v drugi kvadrant. Kako naj dokazujem vprašanje?
Glej spodaj. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Dokaži, da 32sin ^ 4x.cos ^ 2x = cos6x-2cos4x-cos 2x + 2?
RHS = cos6x-2cos4x-cos2x + 2 = cos6x-cos2x + 2 (1-cos4x) = -2sin ((6x + 2x) / 2) * sin ((6x-2x) / 2) + 2 * 2sin ^ 2 ( 2x) = 4sin ^ 2 (2x) -2sin4x * sin2x = 4sin ^ 2 (2x) -2 * 2 * sin2x * cos2x * sin2x = 4sin ^ 2 (2x) -4sin ^ 2 (2x) * cos2x = 4sin ^ 2 (2x) [1-cos2x] = 4 * (2sinx * cosx) ^ 2 * 2sin ^ 2x = 4 * 4sin ^ 2x * cos ^ 2x * 2sin ^ 2x = 32sin ^ 4x * cos ^ 2x = LHS
Dokaži, da ((cos (33 ^ @)) ^ 2- (cos (57 ^ @)) ^ 2) / ((sin (10.5 ^ @)) ^ 2- (sin (34.5 ^ @)) ^ 2) = -sqrt2?
Glej spodaj. Uporabljamo formule (A) - cosA = sin (90 ^ @ - A), (B) - cos ^ 2A - sin ^ 2A = cos2A (C) - 2sinAcosA = sin2A, (D) - sinA + sinB = 2sin (( A + B) / 2) cos ((AB) / 2) in (E) - sinA-sinB = 2cos ((A + B) / 2) sin ((AB) / 2) (cos ^ 2 33 ^ @ - cos ^ 2 57 ^ @) / (sin ^ 2 10.5^@-sin^2 34.5 ^ @) = (cos ^ 2 33 ^ @ - sin ^ 2 (90 ^ @ - 57 ^ @)) / ((sin10. 5 ^ @ + sin34.5 ^ @) (sin10.5 ^ @ - sin34.5 ^ @)) - uporabljeno A = (cos ^ 2 33 ^ @ - sin ^ 2 33 ^ @) / (- (2sin22.5) ^ @ cos12 ^ @) (2cos22.5 ^ @ sin12 ^ @)) - uporabljeno D & E = (cos66 ^ @) / (- (2sin22.5 ^ @ cos22.5 ^ @ xx2sin12 ^ @ cos12 ^ @) - uporabljeno B = -