Kakšno je obdobje f (theta) = tan ((12 theta) / 7) - sec ((14 theta) / 6)?
42pi Obdobje tan ((12t) / 7) -> (7pi) / 12 Obdobje sekund ((14t) / 6) -> ((6) (2pi)) / 14 = (6pi) / 7 f (t) je najmanj skupna kombinacija (7pi) / 12 in (6pi) / 7. (6pi) / 7 ........ x (7) (7) .... -> 42pi (7pi) / 12 ...... x (12) (6) .... -> 42pi
Kakšno je obdobje f (theta) = tan ((12 theta) / 7) - sec ((17 theta) / 6)?
84pi Obdobje tan ((12t) / 7) -> (7pi) / 12 Obdobje v sekundah ((17t) / 6) -> (12pi) / 17 Najdeno najmanj skupno število (7pi) / 12 in (12pi) ) / 17 (7pi) / 12 ... x ... (12) (12) ... -> 84pi (12pi) / 17 ... x .. (17) (7) ... - > 84pi Obdobje f (t) -> 84pi
Pokažite, da (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Glej spodaj. Naj bo 1 + costheta + isintheta = r (cosalpha + isinalpha), tukaj r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2) ) -2) = 2cos (theta / 2) in tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) ali alfa = theta / 2, nato 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) in lahko napišemo (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n z uporabo DE MOivrejevega izreka kot r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 *