Odgovor:
Enačba parabole je
Pojasnilo:
Enačba parabole je
Vrstica parabole je enako oddaljena od ostrine
Ker je fokus nad vrhom, se parabola odpre navzgor in
Razdalja med vrhom in directrix je
Enačba parabole je
Kakšna je standardna oblika enačbe parabole s poudarkom na (-1,7) in direktriko y = 3?
(x + 1) ^ 2 = 8 (y-5)> "za vsako točko" (x, y) "na paraboli" "razdalja do fokusa in directrix je enaka" "z uporabo" barve (modre) " formula za razdaljo "• barva (bela) (x) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2)" pustiti "(x_1, y_1) = (- 1,7)" in "( x_2, y_2) = (x, y) d = sqrt ((x + 1) ^ 2 + (y-7) ^ 2) = | y-3 | barva (modra) "kvadratna obe strani" (x + 1) ^ 2 + (y-7) ^ 2 = (y-3) ^ 2 rArr (x + 1) ^ 2 = (y-3) ^ 2- ( y-7) ^ 2 barva (bela) ((x + 1) ^ 2xxx) = preklic (y ^ 2) -6y + 9preklic (-y ^ 2) + 14y-49 barva (bela) (xxxxxxxx) = 8y- 40 rArr
Kakšna je standardna oblika enačbe parabole s poudarkom na (5,13) in direktriko y = 3?
(x-5) ^ 2 = 20 (y-8) Naj bo njihova točka (x, y) na paraboli. Njegova razdalja od fokusa na (5,13) je sqrt ((x-5) ^ 2 + (y-13) ^ 2) in njena razdalja od directrix y = 3 bo y-3 Zato bo enačba sqrt ((x -5) ^ 2 + (y-13) ^ 2) = (y-3) ali (x-5) ^ 2 + (y-13) ^ 2 = (y-3) ^ 2 ali (x-5) ^ 2 + y ^ 2-26y + 169 = y ^ 2-6y + 9 ali (x-5) ^ 2 = 20y-160 ali (x-5) ^ 2 = 20 (y-8) graf {(x- 5) ^ 2 = 20 (y-8) [-80, 80, -40, 120]}
Kakšna je standardna oblika enačbe parabole s poudarkom na (5,7) in direktriko y = -6?
Y = (1/26) (x-5) ^ 2 +1/2 Ali y = (1/26) (x ^ 2 -10x) +38/26 Naj bo katera koli točka (x, y) na paraboli , njena razdalja od fokusa (5,7) bi bila enaka njegovi razdalji od direktne y = -6 Skladno s tem, sqrt ((x-5) ^ 2 + (y-7) ^ 2) = y + 6 Square obe strani (x-5) ^ 2 + y ^ 2-14y + 49 = y ^ 2 + 12y +36 (x-5) ^ 2 = 26y-13 Standardni obrazec bi bil y = (1/26) (x -5) ^ 2 +1/2 Ali y = (1/26) (x ^ 2 -10x) +38/26