Odgovor:
Pojasnilo:
Kot
Kako določite mejo (x-pi / 2) tan (x) kot x se približuje pi / 2?
Lim_ (xrarr (pi) / 2) (x- (pi) / 2) tanx = -1 lim_ (xrarr (pi) / 2) (x- (pi) / 2) tanx (x- (pi) / 2) tanx x -> (pi) / 2 tako cosx! = 0 = (x- (pi) / 2) sinx / cosx (xsinx- (πsinx) / 2) / cosx Zato moramo izračunati to mejo lim_ (xrarrπ / 2) ) (xsinx- (πsinx) / 2) / cosx = _ (DLH) ^ ((0/0)) lim_ (xrarrπ / 2) ((xsinx- (πsinx) / 2) ') / ((cosx)' = -lim_ (xrarrπ / 2) (sinx + xcosx- (πcosx) / 2) / sinx = -1, ker lim_ (xrarrπ / 2) sinx = 1, lim_ (xrarrπ / 2) cosx = 0 Nekatera grafična pomoč
Kako najdete mejo (x + sinx) / x kot x se približuje 0?
2 Uporabili bomo naslednjo trigonometrično mejo: lim_ (xto0) sinx / x = 1 Naj f (x) = (x + sinx) / x Poenostavimo funkcijo: f (x) = x / x + sinx / xf ( x) = 1 + sinx / x Ocenite mejo: lim_ (x do 0) (1 + sinx / x) Razdelite mejo z dodajanjem: lim_ (x na 0) 1 + lim_ (x na 0) sinx / x 1 + 1 = 2 Preverjamo graf (x + sinx) / x: graf {(x + sinx) / x [-5.55, 5.55, -1.664, 3.885]} Graf se zdi, da vključuje točko (0, 2), vendar je dejansko nedefiniran.
Kako najdete mejo x ^ 2 kot x se približuje 3 ^ +?
= lim_ (xrarr3 ^ +) 9 lim_ (xrarr3 ^ +) x ^ 2 to je preprost problem omejitve, kjer lahko preprosto priključite 3 in ocenite. Ta vrsta funkcije (x ^ 2) je neprekinjena funkcija, ki ne bo imela vrzeli, korakov, skokov ali lukenj. za ovrednotenje: lim_ (xrarr3 ^ +) 3 ^ 2 = lim_ (xrarr3 ^ +) 9 za vizualni prikaz odgovora, glejte spodnji graf, ko se x približa 3 od desne (pozitivna stran), bo dosegel točko ( 3,9) torej naša meja 9.