Pravilo o moči:
Pravilo moči + verižno pravilo:
Let
Ostala je z nami
Zdaj,
Nazaj na naš problem:
priključite
vemo, da:
zato,
Vstavljanje vrednosti za
Kaj je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 vzamemo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5) ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15-5 + 2 * 3-sqrt15)) / ((2sqrt3)) ^ 2- (sqrt5) ^ 2) = (prekliči (2sqrt15) -5 + 2 * 3zaključi (-sqrt15) - prekliči (2sqrt15) -5 + 2 * 3 + prekliči (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Upoštevajte, da če je v imenovalcu (sqrt3 + sqrt (3 + sqrt5)) in (sqrt3 + sqrt (3-sqrt5)), bo odgovor spremenjen.
Kaj je prvi derivat in drugi derivat 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2) ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)"
Kaj je drugi derivat od x / (x-1) in prvi derivat 2 / x?
Vprašanje 1 Če je f (x) = (g (x)) / (h (x)), potem s koeficientom f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Torej, če je f (x) = x / (x-1), potem je prvi derivat f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) in drugi derivat je f '' (x) = 2x ^ -3 Vprašanje 2 Če f (x) = 2 / x to lahko ponovno napišemo kot f (x) = 2x ^ -1 in uporabimo standardne postopke za prevzem derivata f '(x) = -2x ^ -2 ali, če vam je ljubše f' (x) = - 2 / x ^ 2