Odgovor:
Pojasnilo:
Tako obstajajo 4 možne rešitve:
Odgovor:
Graf razkriva rešitve
Pojasnilo:
Grafi
Torej, to so rešitve
Seveda, algebraically, te rešitve je mogoče dobiti, z uporabo
po delih definicije, sans
Opozorilo: Na splošno so grafične rešitve približki
samo.
graf (y-
Diskriminant kvadratne enačbe je -5. Kateri odgovor opisuje število in vrsto rešitev enačbe: 1 kompleksna rešitev 2 realne rešitve 2 kompleksne rešitve 1 prava rešitev?
Vaša kvadratna enačba ima dve kompleksni rešitvi. Diskriminant kvadratne enačbe nam lahko da samo informacije o enačbi oblike: y = ax ^ 2 + bx + c ali parabola. Ker je najvišja stopnja tega polinoma 2, mora imeti največ dve rešitvi. Diskriminant je preprosto tista pod simbolom kvadratnega korena (+ -sqrt ("")), ne pa tudi simbol kvadratnega korena. + -sqrt (b ^ 2-4ac) Če je diskriminantni, b ^ 2-4ac, manjši od nič (tj. vsako negativno število), potem bi imeli pod kvadratnim korenom simbol negativen. Negativne vrednosti pod kvadratnimi koreninami so kompleksne rešitve. Simbol + označuje, da obstaja rešitev + in re
Kaj je realno število, celo število, celo število, racionalno število in iracionalno število?
Razlaga spodaj Racionalne številke so v treh različnih oblikah; cela števila, ulomke in zaključna ali ponavljajoča se decimalna števila, kot je 1/3. Iracionalne številke so precej "grde". Ne morejo biti zapisane kot frakcije, so neskončne, neponovljive decimale. Primer tega je vrednost π. Celotno število lahko imenujemo celo število in je bodisi pozitivno ali negativno število ali nič. Primer tega je 0, 1 in -365.
Je sqrt21 realno število, racionalno število, celo število, celo število, iracionalno število?
Je iracionalno število in je zato resnično. Najprej dokažimo, da je sqrt (21) realno število, pravzaprav je kvadratni koren vseh pozitivnih realnih števil resničen. Če je x realno število, potem definiramo za pozitivne številke sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. To pomeni, da gledamo na vsa realna števila y tako, da y ^ 2 <= x in vzamemo najmanjše realno število, ki je večje od vseh teh y, tako imenovanih supremumov. Za negativna števila ti y ne obstajajo, saj za vsa realna števila dobimo kvadrat tega števila pozitivno število in vsa pozitivna števila so večja od negativnih. Za vsa pozitivna števila vedn