Kako najdete nedoločen integral x ^ 2 - 2 dx / x ^ 3 - 4x?

Kako najdete nedoločen integral x ^ 2 - 2 dx / x ^ 3 - 4x?
Anonim

Odgovor:

# I = 1/4 ln (x ^ 4-4x ^ 2) + C #

Pojasnilo:

Želimo rešiti

# I = int (x ^ 2-2) / (x ^ 3-4x) dx #

Pomnožite DEN in NUM s # x #

# I = int (x ^ 3-2x) / (x ^ 4-4x ^ 2) dx #

Zdaj lahko naredimo lepo zamenjavo

#barva (rdeča) (u = x ^ 4-4x ^ 2 => du = 4x ^ 3-8xdx = 4 (x ^ 3-2x) dx #

# I = 1 / 4int1 / udu #

#barva (bela) (I) = 1 / 4ln (u) + C #

#barva (bela) (I) = 1/4 ln (x ^ 4-4x ^ 2) + C #

Rešil sem na ta način, z delno razgradnjo frakcij: