Odgovor:
Odgovor je # x = 1/3 # in # y = 2/3 #
Pojasnilo:
Uporabljamo Chaslesov odnos
#vec (AB) = vec (AC) + vec (CB) #
Zato, #vec (BM) = 2vec (MC) #
#vec (BA) + vec (AM) = 2 (vec (MA) + vec (AC)) #
#vec (AM) -2vec (MA) = - vec (BA) + 2vec (AC) #
Ampak,
#vec (AM) = - vec (MA) # in
#vec (BA) = - vec (AB) #
Torej, #vec (AM) + 2vec (AM) = vec (AB) + 2vec (AC) #
# 3vec (AM) = vec (AB) + 2vec (AC) #
#vec (AM) = 1 / 3vec (AB) + 2 / 3vec (AC) #
Torej, # x = 1/3 # in
# y = 2/3 #
Odgovor:
#x = 1/3, y = 2/3 #
Pojasnilo:
Lahko definiramo #P v AB #, in #Q v AC # tako, da
# {(M = B + 2/3 (C-B)), (P = B + 2/3 (A-B)), (Q = A + 2/3 (C-A)):} #
in potem
# M-A = (Q-A) + (P-A) #
ali po zamenjavi
# M-A = 2/3 (C-A) +1 / 3 (B-A) #
tako
#x = 1/3, y = 2/3 #