Odgovor:
Pojasnilo:
To je preprost problem verižnih pravil. Malo lažje je, če zapišemo enačbo kot:
To nas spominja na to
Uporaba verižnega pravila izgleda tako:
Nule funkcije f (x) so 3 in 4, medtem ko so ničle druge funkcije g (x) 3 in 7. Kaj je nič (s) funkcije y = f (x) / g (x) )?
Samo nič od y = f (x) / g (x) je 4. Ko so ničle funkcije f (x) 3 in 4, to pomeni (x-3) in (x-4) faktorja f (x) ). Nadalje so ničle druge funkcije g (x) 3 in 7, kar pomeni (x-3) in (x-7) faktorja f (x). To pomeni, da v funkciji y = f (x) / g (x), čeprav (x-3) izniči imenovalec g (x) = 0, ni definirano, ko je x = 3. Prav tako ni definiran, ko je x = 7. Zato imamo luknjo pri x = 3. in samo nič od y = f (x) / g (x) je 4.
Kaj je derivat te funkcije y = sin x (e ^ x)?
Dy / dx = e ^ x (cosx + sinx) dy / dx = cosx xx e ^ x + e ^ x xx sinx dy / dx = e ^ x (cosx + sinx)
Kaj je derivat funkcije y = sin (xy)?
Dy / dx = (ycos (xy)) / (1-xcos (xy)) Z implicitno diferenciacijo, pravilo izdelka in pravilo verige dobimo d / dxy = d / dxsin (xy) => dy / dx = cos (xy) (d / dx (xy)) = cos (xy) [x (d / dxy) + y (d / dxx)] = cos (xy) (xdy / dx + y) = xcos (xy) dy / dx + ycos (xy) => dy / dx - xcos (xy) dy / dx = ycos (xy) => dy / dx (1-xcos (xy)) = ycos (xy):. dy / dx = (ycos (xy)) / (1-xcos (xy))