Odgovor:
# Cosx = 1/2 # in # cosx = -3 / 4 #
Pojasnilo:
Korak 1:
# cos2x-Sin ^ 2 (x / 2) + 3/4 = 0 #
Uporaba # cos2x = cos ^ 2x-sin ^ 2x #
2. korak:
# cos ^ 2x-sin ^ 2x-sin ^ 2 (x / 2) + 3/4 = 0 #
Uporaba # sin ^ 2x + cos ^ 2x = 1 #
3. korak:
# 2cos ^ 2x-1-sin ^ 2 (x / 2) + 3/4 = 0 #
Uporaba # cosx = 1-2sin ^ 2 (x / 2) # (Formula z dvojnim kotom).
4. korak:
# 2cos ^ 2x-1-1 / 2 + 1 / 2cosx + 3/4 = 0 #
# 2cos ^ 2x + 2cosx-3 = 0 #
Pomnožite s 4, da dobite
# 8cos ^ x + 2cosx-3 = 0 #
5. korak: Rešite kvadratno enačbo
# (2cos-1) (4cosx + 3) = 0 #
# cosx = 1/2 # in # cosx = -3 / 4 #