Če je sinθ + cosecθ = 4, potem je sin ^ 2θ-cosec ^ 2θ =?

Če je sinθ + cosecθ = 4, potem je sin ^ 2θ-cosec ^ 2θ =?
Anonim

Odgovor:

# sin ^ 2theta-csc ^ 2theta = -8sqrt3 #

Pojasnilo:

Tukaj, Če # sinθ + cosecθ = 4 #, potem # sin ^ 2θ-cosec ^ 2θ =? #

Let

#barva (modra) (sintheta + csctheta = 4 … do (1) #

Kvadriranje obeh strani

# (sintheta + csctheta) ^ 2 = 4 ^ 2 #

# => sin ^ 2theta + 2sinthetacsctheta + csc ^ 2theta = 16 #

# => sin ^ 2theta + csc ^ 2theta = 16-2sintetacsctheta #

Dodajanje,#color (zelena) (- 2sintetacsctheta # obe strani

# sin ^ 2theta-2sinthetacsctheta + csc ^ 2theta = 16-4sintetacsctheta #

# (sintheta-csctheta) ^ 2 = 16-4, kje, barva (zelena) (sinthetacsctheta = 1 #

# (sintheta-csctheta) ^ 2 = 12 = (4xx3) = (2sqrt3) ^ 2 #

# sintheta-csctheta = + - 2sqrt3 #

Ampak, #barva (rdeča) (- 1 <= sintheta <= 1 in sintheta + csctheta = 4 #

#:. barva (rdeča) (1 <= csctheta <= 4 => sintheta <csctheta => sintheta-csctheta <0 #

Torej, #color (modra) (sintheta-csctheta = -2sqrt3 … do (2) #

Od #barva (modra) ((1) in (2) #,dobimo

# sin ^ 2theta-csc ^ 2theta = (sintheta + csctheta) (sintheta-csctheta) #

# sin ^ 2theta-csc ^ 2theta = (4) (- 2sqrt3) #

# sin ^ 2theta-csc ^ 2theta = -8sqrt3 #