Kako rešiti sqrt (3x) + 8 = x + 2?

Kako rešiti sqrt (3x) + 8 = x + 2?
Anonim

Odgovor:

# x = {3,12} #

Pojasnilo:

#sqrt (3x) + 8 = x + 2 #

#sqrt (3x) = x + 2-8 #

#sqrt (3x) = x-6 #

# (sqrt (3x)) ^ 2 = (x-6) ^ 2 #

# 3x = x ^ 2-12x + 36 #

# x ^ 2-12x-3x + 36 = 0 #

# x ^ 2-15x + 36 = 0 #

# (x-12) (x-3) = 0 #

# "if (x-12) = 0, potem x = 12" #

# "če (x-3) = 0, potem x = 3" #

# x = {3,12} #

Odgovor:

3 in 12

Pojasnilo:

#sqrt (3x) + 8 = x + 2 #

Izolirajte radikalni izraz.

#sqrt (3x) = x - 6 #

Kvadrat obeh strani:

# 3x = (x - 6) ^ 2 = x ^ 2 - 12x + 36 #

# x ^ 2 - 15x + 36 = 0 #

Poišči 2 številki (realne korenine), ki poznajo vsoto (15 = -b) in produkt (c = 36). To so: 3 in 12.