Odgovor:
Cos (
Pojasnilo:
Če
greh
Zdaj cos 2
Odgovor:
Pojasnilo:
Let
Odštevanje,
in edini pozitivni koren je
In
A je akutni kot in cos A = 5/13. Brez uporabe množenja ali kalkulatorja poiščite vrednost vsake od naslednjih funkcij trigonometrije: a) cos (180 ° -A) b) sin (180 ° -A) c) tan (180 ° + A)?
Vemo, da je cos (180-A) = - cos A = -5 / 13 sin (180-A) = sin A = sqrt (1-cos ^ 2 A) = 12/13 tan (180 + A) = sin (180 + A) / cos (180 + A) = (- sin A) / (- cos A) = tan A = 12/5
Kako najdete vrednost cos105 brez uporabe kalkulatorja?
Cos105 = (1-sqrt3) / (2sqrt2) Lahko napišete cos (105) kot cos (45 + 60) Zdaj, cos (A + B) = cosAcosB-sinAsinB Torej, cos (105) = cos45cos60-sin45sin60 = (1 / sqrt2) * (1/2) - (1 / sqrt2) ((sqrt3) / 2) = (1-sqrt3) / (2sqrt2)
Brez uporabe rešiti funkcijo kalkulatorja, kako rešiti enačbo: x ^ 4-5x ^ 3-x ^ 2 + 11x-30 = 0?
Nule so x = 5, x = -2, x = 1 + -sqrt (2), če (x) = x ^ 4-5x ^ 3-x ^ 2 + 11x-30 Rečeno nam je, da (x-5) je faktor, zato ga ločite: x ^ 4-5x ^ 3-x ^ 2 + 11x-30 = (x-5) (x ^ 3-x + 6) Rečeno nam je, da je (x + 2) tudi faktor, tako ločimo to: x ^ 3-x + 6 = (x + 2) (x ^ 2-2x + 3) Diskriminant preostalega kvadratnega faktorja je negativen, vendar še vedno lahko uporabimo kvadratno formulo za iskanje Kompleksne korenine: x ^ 2-2x + 3 je v obliki ax ^ 2 + bx + c z a = 1, b = -2 in c = 3. Korenine so podane s kvadratno formulo: x = (-b + -sqrt (b ^ 2-4ac)) / (2a) = (2 + -sqrt ((- 2) ^ 2- (4 * 1 * 3)) ) / (2 * 1) = (2 + -sqrt (4-12))