Kaj je domena in obseg za y = 6sin ^ -1 (4x)?

Kaj je domena in obseg za y = 6sin ^ -1 (4x)?
Anonim

Odgovor:

domena: # -1 / 4 <= x <= 1/4 #

obseg: # yinRR #

Pojasnilo:

Zapomnite si preprosto, da so domene katerekoli funkcije vrednosti # x # in območje je niz vrednosti # y #

Funkcija: # y = 6sin ^ -1 (4x) #

Zdaj preuredite našo funkcijo kot: # y / 6 = sin ^ -1 (4x) #

Ustrezno # sin # funkcija #sin (y / 6) = 4x # potem # x = 1 / 4sin (y / 6) #

Kaj # sin # funkcija niha med #-1# in #1#

# => - 1 <= sin (y / 6) <= 1 #

# => - 1/4 <= 1 / 4sin (y / 6) <= 1/4 #

# => - 1/4 <= x <= 1/4 #

Čestitamo, da ste pravkar našli domeno (vrednosti # x #)!

Zdaj nadaljujemo z iskanjem vrednosti # y #.

Začeti od # x = 1 / 4sin (y / 6) #

Vidimo, da je vsaka resnična vrednost # y # izpolnjujejo zgoraj navedeno funkcijo.

To pomeni #y v RR #