Razlog, zakaj ima večina organizmov celo število kromosomov, je, da so kromosomi v parih. Človek, na primer, bo imel polovico kromosomov od očeta in polovico od matere.
Obstajajo izjeme od pravila. Na primer, posameznik z Downovim sindromom bo imel 47 kromosomov namesto 46, ker jih imajo trisomija 21 (tri kopije 21. kromosoma, namesto samo dveh).
Druga izjema bi bila poliploidnost, ki se pojavi, ko imajo organizmi več parov kromosomov kot diploidna celica.
Spodaj je slika za pomoč pri vizualizaciji poliploidnosti. Primer haploidne celice bi bila gameta (na primer celica semenčic) in diploidna celica bi bila kožna celica osebe s 46 kromosomi.
Kaj je realno število, celo število, celo število, racionalno število in iracionalno število?
Razlaga spodaj Racionalne številke so v treh različnih oblikah; cela števila, ulomke in zaključna ali ponavljajoča se decimalna števila, kot je 1/3. Iracionalne številke so precej "grde". Ne morejo biti zapisane kot frakcije, so neskončne, neponovljive decimale. Primer tega je vrednost π. Celotno število lahko imenujemo celo število in je bodisi pozitivno ali negativno število ali nič. Primer tega je 0, 1 in -365.
Kaj je srednje celo število 3 zaporednih pozitivnih celo število, če je produkt manjših dveh celih števil 2 manj kot petkrat največje celo število?
8 '3 zaporedna pozitivna celo število' lahko zapišemo kot x; x + 2; x + 4 Produkt dveh manjših celih števil je x * (x + 2) '5-krat največje celo število' je 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 negativni rezultat lahko izključimo, ker so cela števila pozitivna, zato je x = 6 Srednje celo število je 8
Je sqrt21 realno število, racionalno število, celo število, celo število, iracionalno število?
Je iracionalno število in je zato resnično. Najprej dokažimo, da je sqrt (21) realno število, pravzaprav je kvadratni koren vseh pozitivnih realnih števil resničen. Če je x realno število, potem definiramo za pozitivne številke sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. To pomeni, da gledamo na vsa realna števila y tako, da y ^ 2 <= x in vzamemo najmanjše realno število, ki je večje od vseh teh y, tako imenovanih supremumov. Za negativna števila ti y ne obstajajo, saj za vsa realna števila dobimo kvadrat tega števila pozitivno število in vsa pozitivna števila so večja od negativnih. Za vsa pozitivna števila vedn