Odgovor:
Pojasnilo:
#f (x) = tan (x) #
ima navpične asimptote za vse
Vrednost funkcije ni definirana pri vsaki od teh vrednosti
Razen teh asimptotov,
#RR "{x: x = pi / 2 + npi, n v ZZ} #
graf {tan x -10, 10, -5, 5}
Kakšne so asimptote in luknje, če obstajajo, f (x) = (1 + 1 / x) / (1 / x)?
Je luknja pri x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 To je linearna funkcija z gradientom 1 in y-prestrezanjem 1. Opredeljena je na vsakem x razen x = 0, ker je delitev na 0 ni definirano.
Kakšne so asimptote in luknje, če obstajajo, f (x) = 1 / cosx?
Na x = pi / 2 + pin, n in integer bodo navpične asimptote. Pojavili se bodo asimptoti. Kadar je imenovalec enak 0, se pojavijo navpične asimptote. Nastavimo imenovalec na 0 in rešimo. cosx = 0 x = pi / 2, (3pi) / 2 Ker je funkcija y = 1 / cosx periodična, bodo prisotne neskončne navpične asimptote, ki sledijo vzorcu x = pi / 2 + pin, n celo število. Končno, upoštevajte, da je funkcija y = 1 / cosx enaka y = secx. Upajmo, da to pomaga!
Kakšne so asimptote in luknje, če obstajajo, f (x) = 1 / (2-x)?
Asimptote te funkcije so x = 2 in y = 0. 1 / (2-x) je racionalna funkcija. To pomeni, da je oblika funkcije taka: graf {1 / x [-10, 10, -5, 5]} Sedaj funkcija 1 / (2-x) sledi isti strukturi grafov, vendar z nekaj potegi . Graf se najprej premakne vodoravno na desno za 2. Sledi odsev nad osjo x, kar pomeni, da je graf tako: graf {1 / (2-x) [-10, 10, -5, 5 ]} Z mislijo na ta graf, da bi našli asimptote, vse, kar je potrebno, je iskanje linij, ki jih graf ne bo dotaknil. In to so x = 2 in y = 0.