Odgovor:
Pogostost je
Pojasnilo:
Funkcija v
Da bi našli obdobje (ali frekvenco, ki ni nič drugega kot obratno obdobje) funkcije, moramo najprej ugotoviti, ali je funkcija periodična. Za to bi moralo biti razmerje med dvema povezanima frekvencama racionalno število in kot je
Obdobje. T
Zato je obdobje delovanja
Pogostost, ki je obrnjena na obdobje, je
Dokazilo: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Kakšna je enačba tangentne linije r = tan ^ 2 (theta) - sin (theta-pi) pri theta = pi / 4?
R = (2 + sqrt2) / 2 r = tan ^ 2 theta - sin (theta - pi) pri pi / 4 r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - sin ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Kakšna je enačba črte, ki je normalna na polarno krivuljo f (theta) = - 5theta - sin ((3theta) / 2-pi / 3) + tan ((theta) / 2-pi / 3) pri theta = pi?
Vrstica je y = (6 - 60pi + 4sqrt (3)) / (9sqrt (3) -52) x + ((sqrt (3) (1 - 10pi) +2) ^ 2) / (9sqrt (3) - 52) Ta zveza enačbe izhaja iz nekoliko dolgega procesa. Najprej bom opisal korake, po katerih se bo izpeljava nadaljevala in nato izvedla te korake. Dali smo funkcijo v polarnih koordinatah, f (theta). Lahko vzamemo derivat, f '(theta), toda da bi dejansko našli črto v kartezičnih koordinatah, bomo potrebovali dy / dx. Dy / dx lahko najdemo z naslednjo enačbo: dy / dx = (f '(theta) sin (theta) + f (theta) cos (theta)) / (f' (theta) cos (theta) - f ( theta) sin (theta)) Potem bomo ta naklon vtaknili v standa