Odgovor:
Dolžina strani
Pojasnilo:
Območje enakostraničnega trikotnika
Glede na:
Dolžina strani
Dolžina vsake strani enakostraničnega trikotnika se poveča za 5 centimetrov, tako da je obod 60 centimetrov. Kako pišeš in rešuješ enačbo, da bi našel prvotno dolžino vsake strani enakostraničnega trikotnika?
Našel sem: 15 "v" Pokličimo originalne dolžine x: Povečanje 5 "v" nam bo dalo: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preureditev: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "v"
Daljša noga pravokotnega trikotnika je 3 cm več kot 3-kratna dolžina krajše noge. Območje trikotnika je 84 kvadratnih centimetrov. Kako najdete obod pravokotnega trikotnika?
P = 56 kvadratnih centimetrov. Za boljše razumevanje glej spodnjo sliko. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Reševanje kvadratne enačbe: b_1 = 7 b_2 = -8 (nemogoče) Torej, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 kvadratnih centimetrov
Obod trikotnika je 29 mm. Dolžina prve strani je dvakratna dolžina druge strani. Dolžina tretje strani je 5 več od dolžine druge strani. Kako najdete dolžine strani trikotnika?
S_1 = 12 s_2 = 6 s_3 = 11 Obod trikotnika je vsota dolžin vseh njegovih strani. V tem primeru velja, da je obseg 29mm. Torej za ta primer: s_1 + s_2 + s_3 = 29 Torej reševanje dolžine stranic, prevedemo izjave v dano v obliko enačbe. "Dolžina prve strani je dvakratna dolžina druge strani". Da bi to rešili, dodeljujemo naključno spremenljivko bodisi s_1 ali s_2. Za ta primer bi pustil x, da je dolžina druge strani, da bi se izognili frakcijam v enačbi. tako vemo, da: s_1 = 2s_2 ampak ker smo pustili s_2 x, zdaj vemo, da: s_1 = 2x s_2 = x "Dolžina 3. strani je 5 več kot je dolžina 2. strani." Prevedem zgo