Odgovor:
glej spodaj
Pojasnilo:
Dobro je, da si zapomnite kvadrate prvih 20 celih števil, prav tako pa boste pomagali tudi z ustreznimi kvadratnimi koreni
Če se jih ne morete spomniti, potem vam bo pomagalo deliti število na svoje osnovne dejavnike.
za popolno kvadratno število je število vsakega primarnega faktorja vedno enakomerno, torej samo polovica števila vsakega primarnega faktorja.
v tem primeru imamo
Kaj je [5 (kvadratni koren iz 5) + 3 (kvadratni koren iz 7)] / [4 (kvadratni koren iz 7) - 3 (kvadratni koren iz 5)]?
(159 + 29sqrt (35)) / 47 barva (bela) ("XXXXXXXX") ob predpostavki, da nisem naredil nobenih aritmetičnih napak (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalizirajte imenovalec tako, da pomnožimo s konjugacijo: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45) ) = (159 + 29sqrt (35)) / 47
Kaj je (kvadratni koren 2) + 2 (kvadratni koren 2) + (kvadratni koren 8) / (kvadratni koren 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 lahko izrazimo kot barvo (rdeča) (2sqrt2 izraz zdaj postane: (sqrt (2) + 2sqrt (2) + barva (rdeča) (2sqrt2)) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 in sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Kaj je kvadratni koren 7 + kvadratni koren 7 ^ 2 + kvadratni koren 7 ^ 3 + kvadratni koren 7 ^ 4 + kvadratni koren 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prva stvar, ki jo lahko storimo, je preklicati korenine na tistih s pravimi močmi. Ker: sqrt (x ^ 2) = x in sqrt (x ^ 4) = x ^ 2 za poljubno število, lahko rečemo, da sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sedaj lahko 7 ^ 3 ponovno napišemo kot 7 ^ 2 * 7, in da 7 ^ 2 lahko izstopi iz korena! Enako velja za 7 ^ 5, vendar je ponovno napisano kot 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Zdaj postav