Višina trikotnika narašča s hitrostjo 1,5 cm / min, medtem ko se površina trikotnika povečuje s hitrostjo 5 kvadratnih cm / min. S kakšno hitrostjo se spreminja osnova trikotnika, ko je višina 9 cm in je površina 81 kvadratnih cm?
To je problem tipa povezane stopnje (spremembe). Zanimive spremenljivke so a = višina A = območje in ker je površina trikotnika A = 1 / 2ba, potrebujemo b = osnovo. Dane stopnje spremembe so v enotah na minuto, tako da je (nevidna) neodvisna spremenljivka t = čas v minutah. Podani smo: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min. Od nas zahtevamo, da najdemo (db) / dt pri a = 9 cm in A = 81cm "" ^ 2 A = 1 / 2ba, ki se razlikuje glede na t, dobimo: d / dt (A) = d / dt (1 / 2ba). Potrebujemo pravilo o izdelku na desni. (dA) / dt = 1/2 (db) / dt a + 1 / 2b (da) / dt Dali smo vsako vrednost razen
Površina paralelograma je 486 kvadratnih cm. Vsota njegovih baz je 54 cm. Vsaka poševna stran meri 14 cm. Kakšna je višina?
Višina je 18 cm. Površina paralelograma je: A = b * h Če je vsota osnov 54, je vsaka baza 54-: 2 = 27 (paralelogram ima 2 para enakih in vzporednih strani). da: h = A-: b = 486-: 27 = 18
Kolikšna je hitrost spremembe širine (v ft / sec), ko je višina 10 čevljev, če se višina v tistem trenutku zmanjšuje s hitrostjo 1 čevljev / sek. Pravokotnik ima tako spremembo višine kot tudi spreminjajočo se širino , vendar se višina in širina spremenita tako, da je površina pravokotnika vedno 60 kvadratnih metrov?
Stopnja spremembe širine s časom (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Torej (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Torej, kadar je h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"