Odgovor:
Uporabite naslednja pravila:
Pojasnilo:
Začnite z leve strani
Preverite secx • cscx + cotx = tanx + 2cosx • cscx?
RHS = tanx + 2cosx * cscx = sinx / cosx + (2cosx) / sinx = (sin ^ 2x + 2cos ^ 2x) / (sinx * cosx) = (sin ^ 2x + cos ^ 2x + cos ^ 2x) / (sinx * cosx) = (1 + cos ^ 2x) / (sinx * cosx) = 1 / (sinx * cosx) + (cos ^ 2x) / (sinx * cosx) = cscx * secx + cotx = LHS
Kako preverite (tan ^ 2x) / (secx-1) -1 = secx?
"Leva stran" = tan ^ 2x / (secx-1) -1 Uporabite identiteto: cos ^ 2x + sin ^ 2x = 1 => 1 + tan ^ 2x = sek ^ 2x => tan ^ 2x = sek ^ 2x -1 => "Leva stran" = (sec ^ 2x-1) / (secx-1) -1 = (prekliči ((secx-1)) (secx + 1)) / prekliči (secx-1) -1 => secx + 1-1 = barva (modra) secx = "desna stran"
Kako dokazati to identiteto? (cosxcotx-tanx) / cscx = cosx / secx-sinx / cotx
Identiteta mora biti resnična za katero koli število x, ki preprečuje delitev na nič. (cosxcotx-tanx) / cscx = {cos x (cos x / sin x) - sin x / cos x} / (1 / sin x) = cos ^ 2x - sin ^ 2 x / cos x = cos x / (1 / cos x) - sin x / (cos x / sin x) = cosx / secx-sinx / cotx