Odgovor:
Tukaj sta dva vektorja za enote, odvisno od vrstnega reda operacij. So
Pojasnilo:
Ko vzamete produkt dveh vektorjev, izračunate vektor, ki je pravokoten na prva dva. Vendar pa rešitev
Kot hitra osvežitev, navzkrižni produkt
in dobite vsak izraz tako, da vzamete zmnožek diagonalnih izrazov, ki potekajo od leve proti desni, začenši z dano vektorsko črko (i, j ali k) in odštejte zmnožek diagonalnih izrazov, ki gredo od desne proti levi, začenši od enaka črka vektorja:
Za dve rešitvi, nastavite:
Oglejmo si obe rešitvi:
# vecAoxvecB #
Kot je navedeno zgoraj:
# vecBoxvecA #
Kot flip k prvi formulaciji, ponovno vzemite diagonale, vendar je matrika oblikovana drugače:
Opazite, da se odštevanje obrne okoli. To je tisto, kar povzroča obliko »Enako in nasprotno«.
Kaj je enotni vektor, ki je pravokoten na ravnino, ki vsebuje (i + j - k) in (i - j + k)?
Vemo, da če je vec C = vec A × vec B, potem je vec C pravokotno na oba vec A in vec B Torej, kar potrebujemo, je samo najti navzkrižni produkt danih dveh vektorjev. Torej, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Torej je enota vektor (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Kaj je enotni vektor, ki je pravokoten na ravnino, ki vsebuje <0, 4, 4> in <1, 1, 1>?
Odgovor je = 〈0,1 / sqrt2, -1 / sqrt2 that Vektor, ki je pravokoten na 2 druge vektorje, je podan v navzkrižnem produktu. ,4 0,4,4 〈x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) =, 0,4, -4〉 Preverjanje z izdelavo pik ,4 0,4,4 〈. 〈0,4, -4〉 = 0 + 16-16 = 0 ,1 1,1,1 〈. 〈0,4, -4〉 = 0 + 4-4 = 0 Modul, 0,4, -4〉 je = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Enotni vektor se dobi tako, da vektor razdelimo na modul = 1 / (4sqrt2), 0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2
Kaj je enotni vektor, ki je pravokoten na ravnino, ki vsebuje (20j + 31k) in (32i-38j-12k)?
Enota vektor je == 1 / 1507.8 <938,992, -640> Vektor, pravokoten na 2 vectros v ravnini, se izračuna z determinanto | (veci, vecj, veck), (d, e, f), (g, h, i) | kjer sta, d, e, f〉 in, g, h, i〉 2 vektorja Tukaj imamo veca = 0 0,20,31〉 in vebb =, 32, -38, -12〉 Zato, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = ,9 938,992, -640〉 = vecc Preverjanje z dvema točkama izdelki 38 938,992, -640〉. 〈0,20,31〉 = 938 * 0 + 992 * 20-640 * 31 = 0 38 938,992, -640 〈