Odgovor:
Morda je to "goljufanje", vendar bi samo nadomestil
Pojasnilo:
Verjetno bi morali uporabiti identiteto
Vstavi
Potem pa
kjer v zadnji vrstici uporabljamo
Kot lahko vidite, je to nerodno v primerjavi s samo postavitvijo
Odgovor:
Pojasnilo:
Trig tabela ->
Krog Trig enot in lastnost komplementarnih lokov ->
P se lahko izrazi kot:
OPOMBA. Lahko ocenimo
Kako izražate cos (pi / 3) * sin ((3 pi) / 8) brez uporabe izdelkov trigonometričnih funkcij?
Cos (pi / 3) * sin ((3pi) / 8) = 1/2 * greh ((17pi) / 24) + 1/2 * sin (pi / 24) začne z barvo (rdeča) ("Sum in Difference") formula ") sin (x + y) = sin x cos y + cos x sin y" "" "1. enačba sin (xy) = sin x cos y - cos x sin y" "" "2. enačba Odštejemo 2. od 1. enačba sin (x + y) -sin (xy) = 2cos x sin y 2cos x sin y = sin (x + y) -sin (xy) cos x sin y = 1/2 sin (x + y) -1 / 2 sin (xy) Na tej točki naj x = pi / 3 in y = (3pi) / 8 nato uporabimo cos x sin y = 1/2 sin (x + y) -1/2 sin (xy) cos (pi / 3) * greh ((3pi) / 8) = 1/2 * greh ((17pi) / 24) + 1/2 * greh (pi / 24) B
Kako izražate f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta v smislu neeksponentnih trigonometričnih funkcij?
Glej spodaj f (theta) = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2theta + 3 (csc ^ 2theta-1) -3csc ^ 2theta = 3sin ^ 2taj + prekliči (3csc ^ 2theta) -prekini3csc ^ 2te-3 = 3sin ^ 2te-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta
Kako izražate cos ((15 pi) / 8) * cos ((5 pi) / 8) brez uporabe izdelkov trigonometričnih funkcij?
Cos ((15pi) / 8) cos ((5pi) / 8) = 1/2 cos ((5pi) / 2) +1/2 cos ((5pi) / 4) = - sqrt2 / 2 2cos A cos B = cos (A + B) + cos (AB) cosAcos B = 1/2 (cos (A + B) + cos (AB)) A = (15pi) / 8, B = (5pi) / 8 => cos (( 15pi) / 8) cos ((5pi) / 8) = 1/2 (cos ((15pi) / 8 + (5pi) / 8) + cos ((15pi) / 8- (5pi) / 8)) = 1 / 2 (cos ((20pi) / 8) + cos ((10pi) / 8)) = 1/2 cos ((5pi) / 2) +1/2 cos ((5pi) / 4) = 0 + -sqrt2 / 2 = -sqrt2 / 2 cos ((15pi) / 8) cos ((5pi) / 8) = 1/2 cos ((5pi) / 2) +1/2 cos ((5pi) / 4) = - sqrt2 / 2