Kaj je sqrt (4x-3) = 2 + sqrt (2x-5)?

Kaj je sqrt (4x-3) = 2 + sqrt (2x-5)?
Anonim

Odgovor:

# x = {3,7} #

Pojasnilo:

Glede na:

#sqrt (4x-3) = 2 + sqrt (2x-5) #

Kvadrat obeh strani:

#sqrt (4x-3) ^ 2 = (2 + sqrt (2x-5)) ^ 2 #

VSEBINA:

# 4x-3 = 4 + 4srt (2x-5) + 2x-5 #

Pogoji, podobni skupinam:

# 2x-2 = 4sqrt (2x-5) #

Odprite obe strani PONOVNO:

# 4x ^ 2-8x + 4 = 16 (2x-5) #

Pomnožite:

# 4x ^ 2-8x + 4 = 32x-80 #

Pogoji, podobni skupinam:

# 4x ^ 2-40x + 84 = 0 #

Faktor ven #4#:

# 4 (x ^ 2-10x + 21) = 0 #

Potem pa

# 4 (x ^ 2 - 3x - 7x + 21) = 0 #

# 4 x (x-3) -7 (x-3) = 0 #

Torej

# 4 (x-3) (x-7) = 0 #

Odgovor:

# x_1 = 3 # in # x_2 = 7 #

Pojasnilo:

#sqrt (4x-3) = 2 + sqrt (2x-5) #

#sqrt (4x-3) -sqrt (2x-5) = 2 #

# (sqrt (4x-3) -sqrt (2x-5)) ^ 2 = 2 ^ 2 #

# 4x-3 + 2x-5-2sqrt (8x ^ 2-26x + 15) = 4 #

# 6x-12 = 2sqrt (8x ^ 2-26x + 15) #

# 3x-6 = sqrt (8x ^ 2-26x + 15) #

# (3x-6) ^ 2 = 8x ^ 2-26x + 15 #

# 9x ^ 2-36x + 36 = 8x ^ 2-26x + 15 #

# x ^ 2-10x + 21 = 0 #

# (x-3) * (x-7) = 0 #

Zato # x_1 = 3 # in # x_2 = 7 #