Dolžine strani tega trikotnika so 3 zaporedna cela števila. Če je njena meja 42, kakšna je dolžina najdaljše strani?
15 Pokličite x na najkrajšo stran. Srednja stran: (x + 1) Najdaljša stran: (x + 2) Obod = x + (x + 1) + (x + 3) = 42 3x + 3 = 42 3x = 39 x = 13 Najdaljša stran: x + 2 = 13 + 2 = 15
Obod trikotnika je 29 mm. Dolžina prve strani je dvakratna dolžina druge strani. Dolžina tretje strani je 5 več od dolžine druge strani. Kako najdete dolžine strani trikotnika?
S_1 = 12 s_2 = 6 s_3 = 11 Obod trikotnika je vsota dolžin vseh njegovih strani. V tem primeru velja, da je obseg 29mm. Torej za ta primer: s_1 + s_2 + s_3 = 29 Torej reševanje dolžine stranic, prevedemo izjave v dano v obliko enačbe. "Dolžina prve strani je dvakratna dolžina druge strani". Da bi to rešili, dodeljujemo naključno spremenljivko bodisi s_1 ali s_2. Za ta primer bi pustil x, da je dolžina druge strani, da bi se izognili frakcijam v enačbi. tako vemo, da: s_1 = 2s_2 ampak ker smo pustili s_2 x, zdaj vemo, da: s_1 = 2x s_2 = x "Dolžina 3. strani je 5 več kot je dolžina 2. strani." Prevedem zgo
"Lena ima 2 zaporedna cela števila.Opazi, da je njihova vsota enaka razliki med njimi. Lena izbira še 2 zaporedna cela števila in opazi isto stvar. Dokažite algebraično, da to velja za vsa 2 zaporedna cela števila?
Prosimo, da si ogledate Razlago. Spomnimo se, da se zaporedna cela števila razlikujejo za 1. Zato, če je m celo celo število, mora biti naslednja cela številka n + 1. Vsota teh dveh števil je n + (n + 1) = 2n + 1. Razlika med njihovimi kvadratki je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, po želji! Občuti radost matematike!