Odgovor:
Pojasnilo:
To je grdo.
Začnite tako, da vzamete naravni logaritem ene ali druge strani in pripeljite eksponent
Sedaj ločite vsako stran glede na
Uporaba verigskega pravila za naravne logaritemske funkcije -
Vrnitev na izvirno enačbo:
Zdaj lahko nadomestimo izvirnik
Pokažite, da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sem zmeden, če naredim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bo postal negativen kot cos (180 ° - theta) = - costheta v drugi kvadrant. Kako naj dokazujem vprašanje?
Glej spodaj. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Kako implicitno razlikujete 2 = xy-ysin ^ 2x-cos ^ 2xy ^ 2?
Uporabite Leibnizov zapis in bi morali biti v redu. Za drugi in tretji izraz morate nekajkrat uporabiti verigo.
Kako razlikujete cos (1-2x) ^ 2?
Dy / dx = 4cos (1-2x) sin (1-2x) Najprej cos (1-2x) = u Torej, y = u ^ 2 dy / dx = (dy) / (du) * (du) / (dx) (dy) / (du) = 2u (du) / (dx) = d / dx [cos (1-2x)] = d / dx [cos (v)] (du) / (dx) = ( du) / (dv) * (dv) / (dx) dy / dx = (dy) / (du) * (du) / (dv) * (dv) / (dx) (du) / (dv) = - sin (v) (dv) / (dx) = - 2 dy / dx = 2u * -sin (v) * - 2 dy / dx = 4usin (v) dy / dx = 4cos (1-2x) sin (1- 2x)