Odgovor:
Največja površina
Najmanjša površina
Pojasnilo:
Podobni trikotniki imajo enak kot in velikost razmerja. To pomeni spremembe dolžina katere koli strani, bodisi večje ali manjše, bo enaka za druge dve strani. Kot rezultat, območje. T
Pokazalo se je, da če je razmerje stranic podobnih trikotnikov R, potem je razmerje površin trikotnikov
Primer: Za a
Ampak, če so vse tri strani podvojila po dolžini je območje novega trikotnika
Iz danih informacij moramo poiskati področja dveh novih trikotnikov, katerih stranice so povečane od obeh
Tukaj imamo
Imamo tudi večje
Razmerje med spremembo površine. T
Razmerje med spremembo površine. T
Odgovor:
Minimalno je
Pojasnilo:
Ta odgovor je lahko neveljaven in čaka na preračunavanje in preverjanje! Preverite, ali EET-AP odgovarja za preizkušeno metodo reševanja problema.
Ker sta dva trikotnika podobna, ju imenuj trikotnik
Začnite s spominjanjem Heronovega izreka
Zdaj lahko te informacije uporabimo za iskanje področij. Če
Trikotnik A ima površino 12 in dve strani dolžine 4 in 8. Trikotnik B je podoben trikotniku A in ima stran dolžine 7. Kakšna so največja in najmanjša možna območja trikotnika B?
A_ "Bmin" ~ 4,8 A_ "Bmax" = 36,75 Najprej morate najti dolžine strani za največji velikostni trikotnik A, če je najdaljša stran večja od 4 in 8 in najmanjši trikotnik, kadar je 8 najdaljša stran. Za to uporabite formulo Heron's Area: s = (a + b + c) / 2, kjer so a, b, & c stranske dolžine trikotnika: A = sqrt (s (sa) (sb) (sc)) a = 8, b = 4 "&" c "je neznana dolžina strani" s = (12 + c) / 2 = 6 + 1 / 2c A_A = 12 = sqrt ((6 + 1 / 2c) (6 + 1 / 2c-4) (6 + 1 / 2c-8) (6 + 1 / 2c-c)) A_A = 12 = sqrt ((6 + 1 / 2c) (2 + 1 / 2c) (- 2 + 1 / 2c) ) (6-1 / 2c)) Kvadrat obeh strani: 14
Trikotnik A ima površino 12 in dve strani dolžine 5 in 7. Trikotnik B je podoben trikotniku A in ima stran dolžine 19. Kakšna so največja in najmanjša možna območja trikotnika B?
Največja površina = 187.947 kvadratnih enot Najmanjša površina = 88.4082 "" kvadratnih enot Trikotnika A in B sta podobna. Po metodi razmerja in razmerja trikotnik B ima tri možne trikotnike. Za trikotnik A: strani so x = 7, y = 5, z = 4.800941906394, kot Z = 43.29180759327 ^ @ Kot Z med stranema x in y smo dobili s formulo za površino trikotnika Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tri možne trikotnike za trikotnik B: strani so trikotnik 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, kot Z_1 = 43.29180759327 ^ @ Trikotnik 2. x_2 = 133/5, y_2 = 19, z_2 = 18.243579244297, kot
Trikotnik A ima površino 12 in dve strani dolžine 6 in 9. Trikotnik B je podoben trikotniku A in ima stran dolžine 12. Kakšna so največja in najmanjša možna območja trikotnika B?
Največja površina 48 in najmanjša površina 21.3333 ** Delta s A in B sta podobni. Da bi dobili maksimalno območje Delta B, bi morala stran 12 Delta B ustrezati strani 6 Delta A. Strani so v razmerju 12: 6. Zato bodo površine v razmerju 12 ^ 2: 6 ^ 2 = 144: 36 Največje območje trikotnika B = (12 * 144) / 36 = 48 Podobno kot za najmanjšo površino bo stran 9 Delta A ustrezala strani 12 Delta B. Strani sta v razmerju 12: 9 in območji 144: 81 Minimalna površina Delta B = (12 * 144) / 81 = 21,3333