Odgovor:
Odgovor
Pojasnilo:
pokaži spodaj
Odgovor:
Pojasnilo:
Uporaba linearnosti integrala:
Zdaj:
Nato:
Odgovor:
Pojasnilo:
Kako dokazati (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Glej spodaj. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Kako bi dokazal, da je to identiteta? Hvala vam. (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2)) = (1 + cosx) / (3-cosx)
LHS = (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2) = (cos ^ 2 (x / 2)) / (1 + 1-cos ^ 2 (x / 2) )) = (2cos ^ 2 (x / 2)) / (2-2cos ^ 2 (x / 2)) = (1 + cosx) / (4- (1 + cosx)) = (1 + cosx) / ( 3-cosx) = RHS
Dokaži: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Dokaz spodaj z uporabo konjugatov in trigonometrične različice Pitagorejeve teoreme. Barva dela 1 ((1-cosx) / (1 + cosx)) (bela) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) barva (bela) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) barva (bela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) 2. del Podobno sqrt ((1 + cosx) / (1-cosx) barva (bela) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) 3. del: Združevanje izrazov sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) barva (bela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x