Odgovor:
Pojasnilo:
Odgovor:
Pojasnilo:
Kaj je prvi derivat in drugi derivat 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2) ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)"
Kaj je drugi derivat od x / (x-1) in prvi derivat 2 / x?
Vprašanje 1 Če je f (x) = (g (x)) / (h (x)), potem s koeficientom f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Torej, če je f (x) = x / (x-1), potem je prvi derivat f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) in drugi derivat je f '' (x) = 2x ^ -3 Vprašanje 2 Če f (x) = 2 / x to lahko ponovno napišemo kot f (x) = 2x ^ -1 in uporabimo standardne postopke za prevzem derivata f '(x) = -2x ^ -2 ali, če vam je ljubše f' (x) = - 2 / x ^ 2
Kaj je derivat f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Uporabite pravilo za navajanje in pravilo verige. Odgovor je: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) To je poenostavljena različica. Glej Razlago za opazovanje, do katere točke je mogoče sprejeti kot izpeljan. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3 - lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3 ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 V tej obliki je dejansko sprejemljiva. Tod