Odgovor:
Odgovor je
Pojasnilo:
Potrebujemo
Faktoriziramo imenovalec
Zato,
Kot ga ne morete razdeliti
Domena
Nule funkcije f (x) so 3 in 4, medtem ko so ničle druge funkcije g (x) 3 in 7. Kaj je nič (s) funkcije y = f (x) / g (x) )?
Samo nič od y = f (x) / g (x) je 4. Ko so ničle funkcije f (x) 3 in 4, to pomeni (x-3) in (x-4) faktorja f (x) ). Nadalje so ničle druge funkcije g (x) 3 in 7, kar pomeni (x-3) in (x-7) faktorja f (x). To pomeni, da v funkciji y = f (x) / g (x), čeprav (x-3) izniči imenovalec g (x) = 0, ni definirano, ko je x = 3. Prav tako ni definiran, ko je x = 7. Zato imamo luknjo pri x = 3. in samo nič od y = f (x) / g (x) je 4.
Kaj je domena in obseg 3x-2 / 5x + 1 ter domena in obseg inverzne funkcije?
Domena je vse reals, razen -1/5, ki je obseg inverznega. Razpon je vse reals razen 3/5, ki je domena inverznega. f (x) = (3x-2) / (5x + 1) je definirana in realne vrednosti za vse x razen -1/5, torej je domena f in območje f ^ -1 Nastavitev y = (3x) -2) / (5x + 1) in reševanje za x daje 5xy + y = 3x-2, tako da je 5xy-3x = -y-2, in s tem (5y-3) x = -y-2, torej končno x = (- y-2) / (5y-3). Vidimo, da je y! = 3/5. Tako je območje f vse reals razen 3/5. To je tudi domena f ^ -1.
Kaj je domena kombinirane funkcije h (x) = f (x) - g (x), če je domena f (x) = (4,4,5) in domena g (x) [4, 4,5] )?
Domena je D_ {f-g} = (4,4,5). Glej pojasnilo. (f-g) (x) se lahko izračuna samo za tiste x, za katere sta definirana oba f in g. Tako lahko napišemo, da: D_ {f-g} = D_fnnD_g Tukaj imamo D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)